RESUMEN
All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.
Asunto(s)
Envejecimiento , Epigénesis Genética , Animales , Envejecimiento/genética , Metilación de ADN , Epigenoma , Mamíferos/genética , Nucleoproteínas , Saccharomyces cerevisiae/genéticaRESUMEN
Angiogenesis, the formation of new blood vessels by endothelial cells (ECs), is an adaptive response to oxygen/nutrient deprivation orchestrated by vascular endothelial growth factor (VEGF) upon ischemia or exercise. Hypoxia is the best-understood trigger of VEGF expression via the transcription factor HIF1α. Nutrient deprivation is inseparable from hypoxia during ischemia, yet its role in angiogenesis is poorly characterized. Here, we identified sulfur amino acid restriction as a proangiogenic trigger, promoting increased VEGF expression, migration and sprouting in ECs in vitro, and increased capillary density in mouse skeletal muscle in vivo via the GCN2/ATF4 amino acid starvation response pathway independent of hypoxia or HIF1α. We also identified a requirement for cystathionine-γ-lyase in VEGF-dependent angiogenesis via increased hydrogen sulfide (H2S) production. H2S mediated its proangiogenic effects in part by inhibiting mitochondrial electron transport and oxidative phosphorylation, resulting in increased glucose uptake and glycolytic ATP production.
Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Aminoácidos Sulfúricos/deficiencia , Sulfuro de Hidrógeno/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de Transcripción Activador 4/antagonistas & inhibidores , Factor de Transcripción Activador 4/genética , Aminoácidos Sulfúricos/metabolismo , Animales , Cistationina gamma-Liasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isquemia/metabolismo , Isquemia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Condicionamiento Físico Animal , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factor A de Crecimiento Endotelial Vascular/genéticaRESUMEN
A decline in capillary density and blood flow with age is a major cause of mortality and morbidity. Understanding why this occurs is key to future gains in human health. NAD precursors reverse aspects of aging, in part, by activating sirtuin deacylases (SIRT1-SIRT7) that mediate the benefits of exercise and dietary restriction (DR). We show that SIRT1 in endothelial cells is a key mediator of pro-angiogenic signals secreted from myocytes. Treatment of mice with the NAD+ booster nicotinamide mononucleotide (NMN) improves blood flow and increases endurance in elderly mice by promoting SIRT1-dependent increases in capillary density, an effect augmented by exercise or increasing the levels of hydrogen sulfide (H2S), a DR mimetic and regulator of endothelial NAD+ levels. These findings have implications for improving blood flow to organs and tissues, increasing human performance, and reestablishing a virtuous cycle of mobility in the elderly.
Asunto(s)
Envejecimiento , Sulfuro de Hidrógeno/metabolismo , NAD/metabolismo , Animales , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Noqueados , Microvasos/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Neovascularización Fisiológica , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Sirtuina 1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
SIRT1 is a NAD(+)-dependent deacetylase that governs a number of genetic programs to cope with changes in the nutritional status of cells and organisms. Behavioral responses to food abundance are important for the survival of higher animals. Here we used mice with increased or decreased brain SIRT1 to show that this sirtuin regulates anxiety and exploratory drive by activating transcription of the gene encoding the monoamine oxidase A (MAO-A) to reduce serotonin levels in the brain. Indeed, treating animals with MAO-A inhibitors or selective serotonin reuptake inhibitors (SSRIs) normalized anxiety differences between wild-type and mutant animals. SIRT1 deacetylates the brain-specific helix-loop-helix transcription factor NHLH2 on lysine 49 to increase its activation of the MAO-A promoter. Both common and rare variations in the SIRT1 gene were shown to be associated with risk of anxiety in human population samples. Together these data indicate that SIRT1 mediates levels of anxiety, and this regulation may be adaptive in a changing environment of food availability.
Asunto(s)
Ansiedad/genética , Encéfalo/metabolismo , Conducta Exploratoria , Monoaminooxidasa/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Secuencia de Aminoácidos , Animales , Conducta Animal , Impulso (Psicología) , Regulación de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Monoaminooxidasa/química , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Factores de Transcripción/genéticaRESUMEN
Neuroprosthetics and brain-machine interfaces are immensely beneficial for people with neurological disabilities, and the future generation of neural repair systems will utilize neuromorphic devices for the advantages of energy efficiency and real-time performance abilities. Conventional synaptic devices are not compatible to work in such conditions. The cerebrospinal fluid (CSF) in the central part of the nervous system is composed of 99% water. Therefore, artificial synaptic devices, which are the fundamental component of neuromorphic devices, should resemble biological nerves while being biocompatible, and functional in high-humidity environments with higher functional stability for real-time applications in the human body. In this work, artificial synaptic devices are fabricated based on gelatin-PEDOT: PSS composite as an active material to work more effectively in a highly humid environment (≈90% relative humidity). These devices successfully mimic various synaptic properties by the continuous variation of conductance, like, excitatory/inhibitory post-synaptic current(EPSC/IPSC), paired-pulse facilitation/depression(PPF/PPD), spike-voltage dependent plasticity (SVDP), spike-duration dependent plasticity (SDDP), and spike-rate dependent plasticity (SRDP) in environments at a relative humidity levels of ≈90%.
Asunto(s)
Humedad , Animales , Sinapsis/fisiología , Humanos , Plasticidad Neuronal/fisiología , Proteínas/químicaRESUMEN
Phase behavior in protein-nanoparticle systems in light of protein corona formation has been investigated. We report the formation of HSA thin films following the addition of a solid protein to a solution of CTAB-capped gold nanorods (AuNRs) via phase separation. The phase separation behavior was observed through UV-vis spectroscopy, turbidity assays, and DLS studies. UV-vis spectra for the protein-AuNR solution indicated a possible self-assembly formation by CTAB-HSA complexes and AuNR-HSA conjugates. The turbidity was found to increase linearly up to 30-50% v/v for each component. The growth phase slope is proportional to the concentration of the components, AuNRs, and HSA, with no lag phase. Dynamic light scattering (DLS) shows the formation of larger aggregates with time, implying a segregated phase of AuNR-HSA and a CTAB-HSA-AuNR network. ζ-potential values confirm surface modification, implying protein corona formation on nanorods. The thin films were also characterized using SEM, AFM, SAXS, XPS, FTIR, and TGA studies. SEM images show a smooth surface with a reduced number of pores, indicating the compactness of the deposited structure. AFM shows two different structural pattern formations with the deposition, indicating possible self-assembly of the protein-conjugated nanoparticles. FTIR studies indicate a change in the hydrogen bonding network and confirm the CTAB-HSA-AuNR complex network formation. The XPS studies indicate Au-S bond formation, along with Au-S-S-Au interactions. SAXS studies indicate the formation of aggregates (oligomers), as well as the presence of dominant attractive intermolecular interactions in the thin films.
RESUMEN
Although cigarette smoking (CS) and low back pain (LBP) are common worldwide, their correlations and the mechanisms of action remain unclear. We have shown that excessive activation of mast cells (MCs) and their proteases play key roles in CS-associated diseases, like asthma, chronic obstructive pulmonary disease (COPD), blood coagulation, and lung cancer. Previous studies have also shown that MCs and their proteases induce degenerative musculoskeletal disease. By using a custom-designed smoke-exposure mouse system, we demonstrated that CS results in intervertebral disc (IVD) degeneration and release of MC-restricted tetramer tryptases (TTs) in the IVDs. TTs were found to regulate the expression of methyltransferase 14 (METTL14) at the epigenetic level by inducing N6-methyladenosine (m6A) deposition in the 3' untranslated region (UTR) of the transcript that encodes dishevelled-axin (DIX) domain-containing 1 (DIXDC1). That reaction increases the mRNA stability and expression of Dixdc1. DIXDC1 functionally interacts with disrupted in schizophrenia 1 (DISC1) to accelerate the degeneration and senescence of nucleus pulposus (NP) cells by activating a canonical Wnt pathway. Our study demonstrates the association between CS, MC-derived TTs, and LBP. These findings raise the possibility that METTL14-medicated DIXDC1 m6A modification could serve as a potential therapeutic target to block the development of degeneration of the NP in LBP patients.
Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Ratones , Animales , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Triptasas/metabolismo , Triptasas/uso terapéutico , Núcleo Pulposo/metabolismo , Vía de Señalización Wnt , Fumar , Péptidos y Proteínas de Señalización Intracelular/metabolismoRESUMEN
Most diseases of the spine disproportionately impact older persons, with the modal (i.e., commonest) patient a female in their 8th decade of life. We examined the corpus of spinal RCTs to determine how many included "average" spine patients. We searched PubMed for randomized clinical trials published in the top 7 spine journals over a period of 5 years from 2016 to 2020 and extracted nominal upper age cut-offs and the distribution of ages actually recruited. We identified 186 trials of 26,238 patients. We found that only 4.8% of trials could be applied to an "average" 75-year-old patient. This age-based exclusion was not dependent on funding source. Age-based exclusion was exacerbated by explicit upper age cut-offs, however, the age-based exclusion went beyond explicit age cut-offs. Only few trials were applicable to older patients even amongst trials with no age cut-off specified. Age-based exclusion from clinical trials starts at late middle age. The mismatch between spinal patient's age seen in clinical practice and spinal patient's age in trials was so severe that over the 5 years (2016-2020) almost no RCT evidence was produced applicable to the "average" aged-patient across the body of literature available. In conclusion, age-based exclusion is ubiquitous, multifactorial, and happens on a supratrial level. Eliminating age-based exclusion involves more than an arbitrary lifting of explicitly stated upper age cut-offs. Instead, recommendations include increasing input from geriatricians and ethics committees, establishing updated or new models of cares, and creating new protocols to facilitate further research.
Asunto(s)
Factores de Edad , Selección de Paciente , Ensayos Clínicos Controlados Aleatorios como Asunto , Columna Vertebral , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Persona de Mediana Edad , Columna Vertebral/patologíaRESUMEN
PURPOSE: Low back pain (LBP), a widely prevalent and costly disease around the world, is mainly caused by intervertebral disc (IVD) degeneration (IDD). Although numerous factors may trigger this degenerative process, microbiome dysbiosis has recently been implicated as one of the likely causes. However, the exact relationship between the microbiome and IDD is not well understood. This review summarizes the potential mechanisms and discusses microbiome dysbiosis's possible influence on IDD and LBP. METHODS: Prospective literature review. RESULTS: Alterations in microbiome composition and host responses to the microbiota causing pathological bone development and involution, led to the concept of gut-bone marrow axis and gut-bone axis. Moreover, the concept of the gut-disc axis was also proposed to explain the microbiome's role in IDD and LBP. According to the existing evidence, the microbiome could be an important factor for inducing and aggravating IDD through changing or regulating the outside and inside microenvironment of the IVD. Three potential mechanisms by which the gut microbiota can induce IVD and cause LBP are: (1) translocation of the bacteria across the gut epithelial barrier and into the IVD, (2) regulation of the mucosal and systemic immune system, and (3) regulation of nutrient absorption and metabolites formation at the gut epithelium and its diffusion into the IVD. Furthermore, to investigate whether IVD is initiated by pathogenic bacteria and establish the correlation between the presence of certain microbial groups with the disease in question, microbiome diversity analysis based on16S rRNA data can be used to characterise stool/blood microbiota from IVD patients. CONCLUSION: Future studies on microbiome, fungi and viruses in IDD is necessary to revolutionize our thinking about their possible role in the development of IVD diseases. Furthermore, we believe that inflammation inhibition and interruption of amplification of cascade reaction in IVD by targeting the gut and IVD microbiome is worthwhile for the treatment of IDD and LBP. LEVEL OF EVIDENCE I: Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.
Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Dolor de la Región Lumbar , Estudios Transversales , Disbiosis/complicaciones , Disbiosis/metabolismo , Disbiosis/patología , Humanos , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/patología , Dolor de la Región Lumbar/patología , Estudios ProspectivosRESUMEN
Male fertility and sperm quality are negatively impacted by obesity. Furthermore, recent evidence has shown that male offspring from obese rat mothers also have reduced sperm quality and fertility. Here, we extend work in this area by comparing the effects of both maternal obesity and offspring post-weaning diet-induced obesity, as well as their combination, on sperm quality in mice. We additionally tested whether administration of the NAD+-booster nicotinamide mononucleotide (NMN) can ameliorate the negative effects of obesity and maternal obesity on sperm quality. We previously showed that intraperitoneal (i.p.) injection of NMN can reduce the metabolic deficits induced by maternal obesity or post-weaning dietary obesity in mice. In this study, female mice were fed a high-fat diet (HFD) for 6 weeks until they were 18% heavier than a control diet group. Thereafter, HFD and control female mice were mated with control diet males, and male offspring were weaned into groups receiving control or HFD. At 30 weeks of age, mice received 500 mg/kg body weight NMN or vehicle PBS i.p. for 21 days. As expected, adiposity was increased by both maternal and post-weaning HFD but reduced by NMN supplementation. Post-weaning HFD reduced sperm count and motility, while maternal HFD increased offspring sperm DNA fragmentation and levels of aberrant sperm chromatin. There was no evidence that the combination of post-weaning and maternal HFD exacerbated the impacts in sperm quality suggesting that they impact spermatogenesis through different mechanisms. Surprisingly NMN reduced sperm count, vitality and increased sperm oxidative DNA damage, which was associated with increased NAD+ in testes. A subsequent experiment using oral NMN at 400 mg/kg body weight was not associated with reduced sperm viability, oxidative stress, mitochondrial dysfunction or increased NAD+ in testes, suggesting that the negative impacts on sperm could be dependent on dose or mode of administration.
Asunto(s)
Infertilidad Masculina/etiología , Mononucleótido de Nicotinamida/farmacología , Obesidad Materna , Efectos Tardíos de la Exposición Prenatal , Espermatozoides/efectos de los fármacos , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , EmbarazoRESUMEN
Neuromorphic vision systems, particularly those stimulated by ultraviolet (UV) light, hold great potential applications in portable electronics, wearable technology, biological analysis, military surveillance, etc. Organic artificial synaptic devices hold immense potential in this field due to their ease of processing, flexibility, and biocompatibility. In this work, we have fabricated a flexible organic field-effect transistor (OFET) that utilizes chitosan-silver nanoparticles (AgNPs) composite material as the active dielectric material. During UV light illumination, both silver nanoparticles and the pentacene layer generate a large number of charge carriers. The photogenerated carriers lead to a more significant hole accumulation at the pentacene interface, resulting in a current rise. In the absence of light, the trapped electron in the silver nanoparticles persists for a longer duration, preventing the instant recombination with holes. This extended retention of electrons leads to the observed synaptic performance of the transistor. The use of aluminum oxide (Al2O3) as one of the dielectric layers enables the device to operate effectively at low voltage (<1 V). The device mimics various crucial synaptic properties of the brain, including short-term potentiation and long-term potentiation (STP and LTP), paired-pulse facilitation (PPF), spike-duration dependent plasticity (SDDP), spike-number dependent plasticity (SNDP), and spike-rate dependent plasticity (SRDP), etc. This work introduces an approach to develop flexible organic synaptic transistors that operate efficiently at low voltages, paving the way toward high-performance, UV light-driven neuromorphic vision systems.
Asunto(s)
Ensayo de Materiales , Transistores Electrónicos , Rayos Ultravioleta , Materiales Biocompatibles/química , Plata/química , Tamaño de la Partícula , Nanopartículas del Metal/químicaRESUMEN
The nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide mononucleotide (NMN) is a proposed therapy for age-related disease, whereby it is assumed that NMN is incorporated into NAD+ through the canonical recycling pathway. During oral delivery, NMN is exposed to the gut microbiome, which could modify the NAD+ metabolome through enzyme activities not present in the mammalian host. We show that orally delivered NMN can undergo deamidation and incorporation in mammalian tissue via the de novo pathway, which is reduced in animals treated with antibiotics to ablate the gut microbiome. Antibiotics increased the availability of NAD+ metabolites, suggesting the microbiome could be in competition with the host for dietary NAD+ precursors. These findings highlight new interactions between NMN and the gut microbiome.
Asunto(s)
Microbiota , Mononucleótido de Nicotinamida , Animales , Mononucleótido de Nicotinamida/metabolismo , NAD/metabolismo , Antibacterianos , Mamíferos/metabolismoRESUMEN
The NAD+ -dependent deacylase family of sirtuin enzymes have been implicated in biological ageing, late-life health and overall lifespan, though of these members, a role for sirtuin-2 (SIRT2) is less clear. Transgenic overexpression of SIRT2 in the BubR1 hypomorph model of progeria can rescue many aspects of health and increase overall lifespan, due to a specific interaction between SIRT2 and BubR1 that improves the stability of this protein. It is less clear whether SIRT2 is relevant to biological ageing outside of a model where BubR1 is under-expressed. Here, we sought to test whether SIRT2 over-expression would impact the overall health and lifespan of mice on a nonprogeroid, wild-type background. While we previously found that SIRT2 transgenic overexpression prolonged female fertility, here, we did not observe any additional impact on health or lifespan, which was measured in both male and female mice on standard chow diets, and in males challenged with a high-fat diet. At the biochemical level, NMR studies revealed an increase in total levels of a number of metabolites in the brain of SIRT2-Tg animals, pointing to a potential impact in cell composition; however, this did not translate into functional differences. Overall, we conclude that strategies to enhance SIRT2 protein levels may not lead to increased longevity.
Asunto(s)
Longevidad , Sirtuina 2 , Animales , Femenino , Masculino , Ratones , Envejecimiento/genética , Animales Modificados Genéticamente/metabolismo , Encéfalo/metabolismo , Longevidad/genética , Sirtuina 2/genética , Sirtuina 2/metabolismoRESUMEN
BACKGROUND: Degenerative cervical myelopathy (DCM) manifests as the primary cause of spinal cord dysfunction and is non-traumatic, chronic and progressive in nature. Decompressive surgery is typically utilised to halt further disability and neurological dysfunction. The limitations of current diagnostic options surrounding assessment and prognostic potential render DCM still largely a clinical diagnosis. AIMS: To outline the limitations of current diagnostic techniques, present evidence behind novel quantitative MRI (qMRI) techniques for assessing spinal cord integrity in DCM and suggest future directions. METHOD: Articles published up to November 2021 were retrieved from Medline, EMBASE and EBM using key search terms: spinal cord, spine, neck, MRI, magnetic resonance imaging, qMRI, T1, T2, T2*, R2*, DTI, diffusion tensor imaging, MT, magnetisation transfer, SWI, susceptibility weighted imaging, BOLD, blood oxygen level dependent, fMRI, functional magnetic resonance imaging, functional MRI, MRS, magnetic resonance spectroscopy. RESULTS: A total of 2057 articles were retrieved with 68 articles included for analysis. The search yielded 2 articles on Quantitative T1 mapping which suggested higher T1 values in spinal cord of moderate-severe DCM; 43 articles on DTI which indicated a strong correlation of fractional anisotropy and modified Japanese Orthopaedic Association scores; 15 articles on fMRI (BOLD) which demonstrated positive correlation of functional connectivity and volume of activation of various connections in the brain with post-surgical recovery; 6 articles on MRS which suggested that Choline/N-acetylaspartate (Cho/NAA) ratio presents the best correlation with DCM severity; and 4 articles on MT which revealed a preliminary negative correlation of magnetisation transfer ratio with DCM severity. Notably, most studies were of low sample size with short timeframes within 6 months. CONCLUSIONS: Further longitudinal studies with higher sample sizes and longer time horizons are necessary to determine the full prognostic capacity of qMRI in DCM.
RESUMEN
The blood-spinal cord barrier (BSCB) has been long thought of as a functional equivalent to the blood-brain barrier (BBB), restricting blood flow into the spinal cord. The spinal cord is supported by various disc tissues that provide agility and has different local immune responses compared to the brain. Though physiologically, structural components of the BSCB and BBB share many similarities, the clinical landscape significantly differs. Thus, it is crucial to understand the composition of BSCB and also to establish the cause-effect relationship with aberrations and spinal cord dysfunctions. Here, we provide a descriptive analysis of the anatomy, current techniques to assess the impairment of BSCB, associated risk factors and impact of spinal disorders such as spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), peripheral nerve injury (PNI), ischemia reperfusion injury (IRI), degenerative cervical myelopathy (DCM), multiple sclerosis (MS), spinal cavernous malformations (SCM) and cancer on BSCB dysfunction. Along with diagnostic and mechanistic analyses, we also provide an up-to-date account of available therapeutic options for BSCB repair. We emphasize the need to address BSCB as an individual entity and direct future research towards it.
RESUMEN
Bacterial aromatic polyketides that include many antibiotic and antitumor therapeutics are biosynthesized by the type II polyketide synthase (PKS), which consists of 5-10 stand-alone enzymatic domains. Hedamycin, an antitumor antibiotic polyketide, is uniquely primed with a hexadienyl group generated by a type I PKS followed by coupling to a downstream type II PKS to biosynthesize a 24-carbon polyketide, whose C9 position is reduced by hedamycin type II ketoreductase (hedKR). HedKR is homologous to the actinorhodin KR (actKR), for which we have conducted extensive structural studies previously. How hedKR can accommodate a longer polyketide substrate than the actKR, and the molecular basis of its regio- and stereospecificities, is not well understood. Here we present a detailed study of hedKR that sheds light on its specificity. Sequence alignment of KRs predicts that hedKR is less active than actKR, with significant differences in substrate/inhibitor recognition. In vitro and in vivo assays of hedKR confirmed this hypothesis. The hedKR crystal structure further provides the molecular basis for the observed differences between hedKR and actKR in the recognition of substrates and inhibitors. Instead of the 94-PGG-96 motif observed in actKR, hedKR has the 92-NGG-94 motif, leading to S-dominant stereospecificity, whose molecular basis can be explained by the crystal structure. Together with mutations, assay results, docking simulations, and the hedKR crystal structure, a model for the observed regio- and stereospecificities is presented herein that elucidates how different type II KRs recognize substrates with different chain lengths, yet precisely reduce only the C9-carbonyl group. The molecular features of hedKR important for regio- and stereospecificities can potentially be applied to biosynthesize new polyketides via protein engineering that rationally controls polyketide ketoreduction.
Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Proteínas Bacterianas/metabolismo , Proteína Transportadora de Acilo/metabolismo , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Quercetina/farmacología , Alineación de Secuencia , Estereoisomerismo , Especificidad por SustratoRESUMEN
Bariatric surgery produces significant and quantifiable reductions in back pain. However, there is a lack of information on the association of weight changes after bariatric surgery with changes in pain score. We aim to evaluate the impact of bariatric surgery on back pain in obese patients and to address the association between changes in body mass index (BMI) and pain score. In obese patients eligible for bariatric surgery, the changes in pre- and post-operative pain scores, assessed by the Numeric Rating Pain Scale (NPS) or Visual Analogue Scale (VAS), were considered as primary outcomes. Mean difference (MD) and their 95% confidence intervals (CI) were evaluated. Eight cohort studies were included in the analysis of 298 obese patients undergoing bariatric surgery. All studies showed a reduction in back pain, with a mean change of -2.9 points in NPS and of -3.8 cm in VAS. There was a significant reduction in back pain (NPS: (MD = -3.49) (95% CI = -3.86, -3.12); VAS: MD = -3.75, (95% CI = -4.13, -3.37)) and BMI (MD = -12.93, (95% CI = -13.61, -12.24)) following bariatric surgery. No significant relationship between BMI change and decrease in clinical scores could be established. However, it was evident that bariatric surgery had a significant effect on back pain scores in severely obese patients. Ideally, a prospective study including spinal imaging, inflammatory markers, a longer follow-up period, and larger study groups with a randomized control group needs to be performed.
RESUMEN
Degenerative cervical myelopathy (DCM), earlier referred to as cervical spondylotic myelopathy (CSM), is the most common and serious neurological disorder in the elderly population caused by chronic progressive compression or irritation of the spinal cord in the neck. The clinical features of DCM include localised neck pain and functional impairment of motor function in the arms, fingers and hands. If left untreated, this can lead to significant and permanent nerve damage including paralysis and death. Despite recent advancements in understanding the DCM pathology, prognosis remains poor and little is known about the molecular mechanisms underlying its pathogenesis. Moreover, there is scant evidence for the best treatment suitable for DCM patients. Decompressive surgery remains the most effective long-term treatment for this pathology, although the decision of when to perform such a procedure remains challenging. Given the fact that the aged population in the world is continuously increasing, DCM is posing a formidable challenge that needs urgent attention. Here, in this comprehensive review, we discuss the current knowledge of DCM pathology, including epidemiology, diagnosis, natural history, pathophysiology, risk factors, molecular features and treatment options. In addition to describing different scoring and classification systems used by clinicians in diagnosing DCM, we also highlight how advanced imaging techniques are being used to study the disease process. Last but not the least, we discuss several molecular underpinnings of DCM aetiology, including the cells involved and the pathways and molecules that are hallmarks of this disease.