Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 172, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597972

RESUMEN

Skin regeneration is severely compromised in diabetic foot ulcers. Allogeneic mesenchymal stem cell (MSC) transplantation is limited due to the poor engraftment, mitogenic, and differentiation potential in the harsh wound microenvironment. Thus, to improve the efficacy of cell therapy, the chemokine receptor Cxcr2 was overexpressed in MSCs (MSCCxcr2). CXCL2/CXCR2 axis induction led to the enhanced proliferation of MSCs through the activation of STAT3 and ERK1/2 signaling. Transcriptional upregulation of FGFR2IIIb (KGF Receptor) promoter by the activated STAT3 and ERK1/2 suggested trans-differentiation of MSCs into keratinocytes. These stable MSCCxcr2 in 2D and 3D (spheroid) cell cultures efficiently transdifferentiated into keratinocyte-like cells (KLCs). An in vivo therapeutic potential of MSCCxcr2 transplantation and its keratinocyte-specific cell fate was observed by accelerated skin tissue regeneration in an excisional splinting wound healing murine model of streptozotocin-induced type 1 diabetes. Finally, 3D skin organoids generated using MSCCxcr2-derived KLCs upon grafting in a relatively avascular and non-healing wounds of type 2 diabetic db/db transgenic old mice resulted in a significant enhancement in the rate of wound closure by increased epithelialization (epidermal layer) and endothelialization (dermal layer). Our findings emphasize the therapeutic role of the CXCL2/CXCR2 axis in inducing trans-differentiation of the MSCs toward KLCs through the activation of ERK1/2 and STAT3 signaling and enhanced skin regeneration potential of 3D organoids grafting in chronic diabetic wounds.


Asunto(s)
Diabetes Mellitus Tipo 1 , Sistema de Señalización de MAP Quinasas , Animales , Ratones , Piel , Queratinocitos , Epidermis
2.
Langmuir ; 40(17): 8820-8826, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38619546

RESUMEN

Hollow porous organic capsules (HPOCs) with an entrapped active catalyst have nanosized cavities, providing the benefits of a nanoreactor, as well as separation of the catalysts from the reaction medium via pores acting as a size-exclusion gate. Such purpose-built HPOCs with desired molecular weight cutoffs offer the advantages of semipermeable membrane separation and a sustainable chemical process that excludes energy-extensive separation. Here, we report a newly synthesized HPOC with an entrapped Pd(PPh3)2Cl2 as the catalyst for demonstrating a Suzuki-Miyaura coupling reaction as a proof of concept.

3.
Mol Ther ; 31(5): 1402-1417, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36380587

RESUMEN

Extracellular vesicles (EVs) are nanovesicles released by all eukaryotic cells. This work reports the first nanoscale fluorescent visualization of tumor-originating vesicles bearing an angiogenic microRNA (miR)-126 cargo. In a validated experimental model of lethal murine vascular neoplasm, tumor-originating EV delivered its miR-126 cargo to tumor-associated macrophages (TAMs). Such delivery resulted in an angiogenic (LYVE+) change of state in TAM that supported tumor formation. Study of the trafficking of tumor-originating fluorescently tagged EV revealed colocalization with TAM demonstrating uptake by these cells. Ex vivo treatment of macrophages with tumor-derived EVs led to gain of tumorigenicity in these isolated cells. Single-cell RNA sequencing of macrophages revealed that EV-borne miR-126 characterized the angiogenic change of state. Unique gene expression signatures of specific macrophage clusters responsive to miR-126-enriched tumor-derived EVs were revealed. Topical tissue nanotransfection (TNT) delivery of an oligonucleotide comprising an anti-miR against miR-126 resulted in significant knockdown of miR-126 in the tumor tissue. miR-126 knockdown resulted in complete involution of the tumor and improved survival rate of tumor-affected mice. This work identifies a novel tumorigenic mechanism that relies on tumorigenic state change of TAM caused by tumor-originating EV-borne angiomiR. This disease process can be effectively targeted by topical TNT of superficial tumors.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Macrófagos/metabolismo , Fagocitosis , Vesículas Extracelulares/metabolismo
4.
Chem Biodivers ; 21(2): e202301429, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38221801

RESUMEN

Short Title: Benzimidazoisoquinoline derivatives as potent antifibrotics Hepatic fibrosis is a pathological condition of liver disease with an increasing number of cases worldwide. Therapeutic strategies are warranted to target the activated hepatic stellate cells (HSCs), the collagen-producing cells, an effective strategy for controlling the disease progression. Benzimidazoisoquinoline derivatives were synthesized as hybrid molecules by the combination of benzimidazoles and isoquinolines to evaluate their anti-fibrotic potential using an in-vitro and in-vivo model of hepatic fibrosis. A small library of benzimidazoisoquinoline derivatives (1-17 and 18-21) was synthesized from 2-aryl benzimidazole and acetylene functionalities through C-H and N-H activation. Compounds (10 and its recently synthesized derivatives 18-21) depicted a significant decrease in PDGF-BB and/or TGFß-induced proliferation (1.7-1.9 -fold), migration (3.5-5.0 -fold), and fibrosis-related gene expressions in HSCs. These compounds could revert the hepatic damage caused by chronic exposure to hepatotoxicants, ethanol, and/or carbon tetrachloride as evident from the histological, biochemical, and molecular analysis. Anti-fibrotic effect of the compounds was supported by the decrease in the malondialdehyde level, collagen deposition, and gene expression levels of fibrosis-related markers such as α-SMA, COL1α1, PDGFRß, and TGFRIIß in the preclinical models of hepatic fibrosis. In conclusion, the synthesized benzimidazoisoquinoline derivatives (compounds 18, 19, 20, and 21) possess anti-fibrotic therapeutic potential against liver fibrosis.


Asunto(s)
Colágeno , Cirrosis Hepática , Ratones , Animales , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Fibrosis , Colágeno/farmacología , Hígado
5.
Ann Surg ; 277(3): e634-e647, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129518

RESUMEN

OBJECTIVE: This work addressing complexities in wound infection, seeks to test the reliance of bacterial pathogen Pseudomonas aeruginosa (PA) on host skin lipids to form biofilm with pathological consequences. BACKGROUND: PA biofilm causes wound chronicity. Both CDC as well as NIH recognizes biofilm infection as a threat leading to wound chronicity. Chronic wounds on lower extremities often lead to surgical limb amputation. METHODS: An established preclinical porcine chronic wound biofilm model, infected with PA or Pseudomonas aeruginosa ceramidase mutant (PA ∆Cer ), was used. RESULTS: We observed that bacteria drew resource from host lipids to induce PA ceramidase expression by three orders of magnitude. PA utilized product of host ceramide catabolism to augment transcription of PA ceramidase. Biofilm formation was more robust in PA compared to PA ∆Cer . Downstream products of such metabolism such as sphingosine and sphingosine-1-phosphate were both directly implicated in the induction of ceramidase and inhibition of peroxisome proliferator-activated receptor (PPAR)δ, respectively. PA biofilm, in a ceram-idastin-sensitive manner, also silenced PPARδ via induction of miR-106b. Low PPARδ limited ABCA12 expression resulting in disruption of skin lipid homeostasis. Barrier function of the wound-site was thus compromised. CONCLUSIONS: This work demonstrates that microbial pathogens must co-opt host skin lipids to unleash biofilm pathogenicity. Anti-biofilm strategies must not necessarily always target the microbe and targeting host lipids at risk of infection could be productive. This work may be viewed as a first step, laying fundamental mechanistic groundwork, toward a paradigm change in biofilm management.


Asunto(s)
PPAR delta , Pseudomonas aeruginosa , Animales , Ceramidasas , Extremidad Inferior , Porcinos
6.
Mol Biol Rep ; 50(1): 215-225, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36319789

RESUMEN

BACKGROUND: Breast cancer patients undergoing chemotherapy encounter a significant challenge of chemoresistance because of drug efflux by ATP-binding cassette (ABC) transporters. Breast cancer cell density alters considerably throughout the early stages of primary and secondary tumor development. Although cell density in culture influences kinetics, the effects of varying cell densities on the chemoresistance of breast cancer cells remains largely unexplored. METHODS AND RESULTS: We observed chemotherapeutics-induced differential gene and protein expression of ABC transporters in luminal and basal breast cancer cells cultured at low and high seeding densities. Low-density cultures depicted a significant increase in the mRNA expression of ABC transporters-ABCG2, ABCG1, ABCC4, ABCA2, ABCA3, ABCC2, ABCC3, ABCC6, ABCC7, and ABCC9 as compared with high-density cultures. Next, cells at both low and high seeding densities when pre-treated with cyclosporine A (CsA), a pan-inhibitor of ABC transporters, resulted in increased sensitization to chemotherapeutics-doxorubicin and tamoxifen at markedly low IC50 concentrations suggesting the role of ABC transporters. Finally, markedly high doxorubicin-drug accumulation, significantly increased expression of N-cadherin, and a significant decrease in chemotherapeutics-induced in vitro tumorigenesis was observed in low-density seeded breast cancer cells when pre-treated with CsA suggesting ABC transporters inhibition-mediated increased efficacy of chemotherapeutics. CONCLUSION: These findings suggest that breast cancer cells grown at low seeding density imparts chemoresistance towards doxorubicin or tamoxifen by a differential increase in the expression of ABC transporters. Thus, a combinatorial treatment strategy including ABC transporter inhibitors and chemotherapeutics can be a way forward for overcoming the breast cancer chemoresistance.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Neoplasias de la Mama , Humanos , Femenino , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Recuento de Células
7.
Chem Soc Rev ; 51(24): 9882-9916, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36420611

RESUMEN

Following an overview of the approaches and techniques used to acheive super-resolution microscopy, this review presents the advantages supplied by nanoparticle based probes for these applications. The various clases of nanoparticles that have been developed toward these goals are then critically described and these discussions are illustrated with a variety of examples from the recent literature.


Asunto(s)
Terapia Molecular Dirigida , Nanopartículas , Microscopía Fluorescente/métodos
8.
J Biol Chem ; 297(5): 101257, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34597669

RESUMEN

Healing of cutaneous wounds requires the collective migration of epithelial keratinocytes to seal the wound bed from the environment. However, the signaling events that coordinate this collective migration are unclear. In this report, we address the role of phosphorylation of eukaryotic initiation factor 2 (eIF2) and attendant gene expression during wound healing. Wounding of human keratinocyte monolayers in vitro led to the rapid activation of the eIF2 kinase GCN2. We determined that deletion or pharmacological inhibition of GCN2 significantly delayed collective cell migration and wound closure. Global transcriptomic, biochemical, and cellular analyses indicated that GCN2 is necessary for maintenance of intracellular free amino acids, particularly cysteine, as well as coordination of RAC1-GTP-driven reactive oxygen species (ROS) generation, lamellipodia formation, and focal adhesion dynamics following keratinocyte wounding. In vivo experiments using mice deficient for GCN2 validated the role of the eIF2 kinase during wound healing in intact skin. These results indicate that GCN2 is critical for appropriate induction of collective cell migration and plays a critical role in coordinating the re-epithelialization of cutaneous wounds.


Asunto(s)
Movimiento Celular , Queratinocitos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cicatrización de Heridas , Aminoácidos/metabolismo , Animales , Línea Celular Transformada , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Humanos , Queratinocitos/patología , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Seudópodos/genética , Seudópodos/metabolismo , Piel/enzimología , Piel/lesiones , Piel/patología
9.
Inorg Chem ; 61(33): 13115-13124, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35950896

RESUMEN

Toxicity induced by inorganic arsenic as AsO33- (iAsIII) is of global concern. Reliable detection of the maximum allowed contaminant level for arsenic in drinking water and in the cellular system remains a challenge for the water quality management and assessment of toxicity in the cellular milieu, respectively. A new Ir(III)-based phosphorescent molecule (AS-1; λExt = 415 nm and λEms = 600 nm, Φ = 0.3) is synthesized for the selective detection of iAsIII in an aqueous solution with a ratiometric luminescence response even in the presence of iAsV and all other common inorganic cations and anions. The relatively higher affinity of the thioimidazole ligand (HPBT) toward iAsIII led to the formation of a fluorescent molecule iAsV-HPBT (λExt = 415 nm and λEms = 466 nm, Φ = 0.28) for the reaction of iAsIII and AS-1. An improved limit of quantitation (LOQ) down to 0.2 ppb is achieved when AS-1 is used in the CTAB micellar system. Presumably, the cationic surfactants favor the localization of AS-1@CTABMicelle in mitochondria of MCF7 cells, and this is confirmed from the images of the confocal laser fluorescence scanning microscopic studies. Importantly, cell viability assay studies confirm that AS-1@CTABMicelle induces dose-dependent detoxification of iAsIII in live cells. Further, luminescence responses at 466 nm could be utilized for developing a hand-held device for the in-field application. Such a reagent that allows for ratiometric detection of iAsIII with LOQ of 2.6 nM (0.5 ppb) in water, as well as helps in visualizing its distribution in mitochondria with a detoxifying effect, is rather unique in contemporary literature.


Asunto(s)
Arsénico , Arsénico/toxicidad , Cetrimonio , Indicadores y Reactivos , Micelas , Mitocondrias
10.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012735

RESUMEN

Diabetes is an endocrinological disorder with a rapidly increasing number of patients globally. Over the last few years, the alarming status of diabetes has become a pivotal factor pertaining to morbidity and mortality among the youth as well as middle-aged people. Current developments in our understanding related to autoimmune responses leading to diabetes have developed a cause for concern in the prospective usage of immunomodulatory agents to prevent diabetes. The mechanism of action of vaccines varies greatly, such as removing autoreactive T cells and inhibiting the interactions between immune cells. Currently, most developed diabetes vaccines have been tested in animal models, while only a few human trials have been completed with positive outcomes. In this review, we investigate the undergoing clinical trial studies for the development of a prototype diabetes vaccine.


Asunto(s)
Diabetes Mellitus Tipo 2 , Vacunas , Adolescente , Animales , Autoinmunidad , Diabetes Mellitus Tipo 2/prevención & control , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Linfocitos T , Vacunas/uso terapéutico
11.
Anal Chem ; 93(17): 6604-6612, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33819029

RESUMEN

The global prevalence of antibiotic-resistant bacteria has increased the risk of dangerous infections, requiring rapid diagnosis and treatment. The standard method for diagnosis of bacterial infections remains dependent on slow culture-based methods, carried out in central laboratories, not easily extensible to rapid identification of organisms, and thus not optimal for timely treatments at the point-of-care (POC). Here, we demonstrate rapid detection of bacteria by combining electrochemical immunoassays (EC-IA) for pathogen identification with confirmatory quantitative mass spectral immunoassays (MS-IA) based on signal ion emission reactive release amplification (SIERRA) nanoparticles with unique mass labels. This diagnostic method uses compatible reagents for all involved assays and standard fluidics for automatic sample preparation at POC. EC-IA, based on alkaline phosphatase-conjugated pathogen-specific antibodies, quantified down to 104 bacteria per sample when testing Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa lysates. EC-IA quantitation was also obtained for wound samples. The MS-IA using nanoparticles against S. aureus, E. coli, Klebsiella pneumoniae, and P. aeruginosa allowed selective quantitation of ∼105 bacteria per sample. This method preserves bacterial cells allowing extraction and amplification of 16S ribosomal RNA genes and antibiotic resistance genes, as was demonstrated through identification and quantitation of two strains of E. coli, resistant and nonresistant due to ß-lactamase cefotaximase genes. Finally, the combined immunoassays were compared against culture using remnant deidentified patient urine samples. The sensitivities for these immunoassays were 83, 95, and 92% for the prediction of S. aureus, P. aeruginosa, and E. coli or K. pneumoniae positive culture, respectively, while specificities were 85, 92, and 97%. The diagnostic platform presented here with fluidics and combined immunoassays allows for pathogen isolation within 5 min and identification in as little as 15 min to 1 h, to help guide the decision for additional testing, optimally only on positive samples, such as multiplexed or resistance gene assays (6 h).


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Escherichia coli/genética , Bacterias Gramnegativas , Bacterias Grampositivas , Humanos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/genética
12.
Bioconjug Chem ; 32(2): 245-253, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33438999

RESUMEN

Leishmaniasis, a vector-borne disease, is caused by intracellular parasite Leishmania donovani. Unlike most intracellular pathogens, Leishmania donovani are lodged in parasitophorous vacuoles and replicate within the phagolysosomes in macrophages. Effective vaccines against this disease are still under development, while the efficacy of the available drugs is being questioned owing to the toxicity for nonspecific distribution in human physiology and the reported drug-resistance developed by Leishmania donovani. Thus, a stimuli-responsive nanocarrier that allows specific localization and release of the drug in the lysosome has been highly sought after for addressing two crucial issues, lower drug toxicity and a higher drug efficacy. We report here a unique lysosome targeting polymeric nanocapsules, formed via inverse mini-emulsion technique, for stimuli-responsive release of the drug miltefosine in the lysosome of macrophage RAW 264.7 cell line. A benign polymeric backbone, with a disulfide bonding susceptible to an oxidative cleavage, is utilized for the organelle-specific release of miltefosine. Oxidative rupture of the disulfide bond is induced by intracellular glutathione (GSH) as an endogenous stimulus. Such a stimuli-responsive release of the drug miltefosine in the lysosome of macrophage RAW 264.7 cell line over a few hours helped in achieving an improved drug efficacy by 200 times as compared to pure miltefosine. Such a drug formulation could contribute to a new line of treatment for leishmaniasis.


Asunto(s)
Antiprotozoarios/administración & dosificación , Leishmaniasis/prevención & control , Lisosomas/metabolismo , Nanocápsulas/química , Fosforilcolina/análogos & derivados , Animales , Antiprotozoarios/farmacología , Humanos , Leishmania donovani/efectos de los fármacos , Ratones , Oxidación-Reducción , Fosforilcolina/administración & dosificación , Fosforilcolina/farmacología , Células RAW 264.7
13.
Cytotherapy ; 23(1): 1-9, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189572

RESUMEN

The inability of two-dimensional cell culture systems to adequately map the structure and function of complex organs like skin necessitates the development of three-dimensional (3D) skin models. A diverse range of 3D skin equivalents have been developed over the last few decades for studying complex properties of skin as well as for drug discovery and clinical applications for skin regeneration in chronic wounds, such as diabetic foot ulcers, where the normal mechanism of wound healing is compromised. These 3D skin substitutes also serve as a suitable alternative to animal models in industrial applications and fundamental research. With the emergence of tissue engineering, new scaffolds and matrices have been integrated into 3D cell culture systems, along with gene therapy approaches, to increase the efficacy of transplanted cells in skin regeneration. This review summarizes recent approaches to the development of skin equivalents as well as different models for studying skin diseases and properties and current therapeutic applications of skin substitutes.


Asunto(s)
Piel Artificial , Ingeniería de Tejidos/métodos , Animales , Humanos , Regeneración , Andamios del Tejido , Cicatrización de Heridas
14.
Wound Repair Regen ; 29(5): 697-710, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33970525

RESUMEN

Skin regeneration has been a challenging clinical problem especially in cases of chronic wounds such as diabetic foot ulcers, and epidermolysis bullosa-related skin blisters. Prolonged non-healing wounds often lead to bacterial infections increasing the severity of wounds. Current treatment strategies for chronic wounds include debridement of wounds along with antibiotics, growth factors, and stem cell transplantation therapies. However, the compromised nature of autologous stem cells in patients with comorbidities such as diabetes limits the efficacy of the therapy. The discovery of induced pluripotent stem cell (iPSC) technology has immensely influenced the field of regenerative therapy. Enormous efforts have been made to develop integration-free iPSCs suitable for clinical therapies. This review focuses on recent advances in the methods and reprogramming factors for generating iPSCs along with the existing challenges such as genetic alterations, tumorigenicity, immune rejection, and regulatory hurdles for the clinical application of iPSCs. Furthermore, this review also highlights the benefits of using iPSCs for the generation of skin cells and skin disease modeling over the existing clinical therapies for skin regeneration in chronic wounds and skin diseases.


Asunto(s)
Pie Diabético , Células Madre Pluripotentes Inducidas , Diferenciación Celular , Pie Diabético/terapia , Humanos , Regeneración , Piel , Trasplante de Células Madre , Cicatrización de Heridas
15.
Org Biomol Chem ; 19(23): 5161-5168, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34037063

RESUMEN

Fluorescent probes provide an unparalleled opportunity to visualize and quantify dynamic events. Here, we employ a medium-size, cysteine specific coumarin based switch-ON fluorescent probe 'L' to track protein unfolding profiles and accessibility of cysteine residues in proteins. It was established that 'L' is highly selective and exhibits no artifact due to interaction with other bystander species. 'L' is able to gauge subtle changes in protein microenvironment and proved to be effective in delineating early unfolding events that are difficult to otherwise discern by classic techniques such as circular dichroism. By solving the X-ray structure of TadA and probing the temperature dependent fluorescence-ON response with native TadA and its cysteine mutants, it was revealed that unfolding occurs in a stage-wise manner and the regions that are functionally important form compact sub-domains and unfold at later stages. Our results assert that probe 'L' serves as an efficient tool to monitor subtle changes in protein structure and can be employed as a generic dye to study processes such as protein unfolding.


Asunto(s)
Cumarinas/química , Cisteína/química , Colorantes Fluorescentes/química , Proteínas/química , Modelos Moleculares , Estructura Molecular , Desplegamiento Proteico
16.
Chem Rev ; 119(22): 11718-11760, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31724399

RESUMEN

All cellular processes are the results of synchronized actions of several intracellular biochemical pathways. Recent emphasis is to visualize such pathways using appropriate small molecular reagents, dye-labeled proteins, and genetically encoded fluorescent biosensors that produce a luminescence ON response either on selective binding or on reacting with an analyte that is produced through a specific biochemical/enzymatic transformation. Studying such enzymatic processes by probing the fluorescence response as the read-out signal is expected to provide important insights into crucial biochemical transformations induced by an enzyme in its native form. Many of such studies are extended for monitoring enzymatic transformations under in vitro or in vivo condition. A few of the recent reports reveal that such molecular probes are even capable of quantifying abnormal levels of enzymes in real-time and is linked to the key area of clinical diagnostics and chemical biology. A synchronized analysis of all such reports helps in developing a rationale for designing purpose-built molecular probes or chemodosimeters as well as newer reagents for studying crucial enzymatic process or quantification of the respective enzyme. In this review, an attempt will be there to highlight several recent bioimaging reagents and studies that have provided insights into crucial biochemical or enzymatic transformations.


Asunto(s)
Enzimas/metabolismo , Colorantes Fluorescentes/química , Bibliotecas de Moléculas Pequeñas/química , Aminopeptidasas/análisis , Aminopeptidasas/metabolismo , Animales , Enzimas/análisis , Glicósido Hidrolasas/análisis , Glicósido Hidrolasas/metabolismo , Humanos , Monofenol Monooxigenasa/análisis , Monofenol Monooxigenasa/metabolismo , Nitrorreductasas/análisis , Nitrorreductasas/metabolismo , Monoéster Fosfórico Hidrolasas/análisis , Monoéster Fosfórico Hidrolasas/metabolismo
17.
Mol Ther ; 28(5): 1314-1326, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32112713

RESUMEN

Mesenchymal stem cell (MSC) therapies for wound healing are often compromised due to low recruitment and engraftment of transplanted cells, as well as delayed differentiation into cell lineages for skin regeneration. An increased expression of chemokine ligand CXCL16 in wound bed and its cognate receptor, CXCR6, on murine bone-marrow-derived MSCs suggested a putative therapeutic relevance of exogenous MSC transplantation therapy. Induction of the CXCL16-CXCR6 axis led to activation of focal adhesion kinase (FAK), Src, and extracellular signal-regulated kinases 1/2 (ERK1/2)-mediated matrix metalloproteinases (MMP)-2 promoter regulation and expression, the migratory signaling pathways in MSC. CXCL16 induction also increased the transdifferentiation of MSCs into endothelial-like cells and keratinocytes. Intravenous transplantation of allogenic stable MSCs with Cxcr6 gene therapy potentiated skin tissue regeneration by increasing recruitment and engraftment as well as neovascularization and re-epithelialization at the wound site in excisional splinting wounds of type I and II diabetic mice. This study suggests that activation of the CXCL16-CXCR6 axis in bioengineered MSCs with Cxcr6 overexpression provides a promising therapeutic approach for the treatment of diabetic wounds.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/terapia , Terapia Genética/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Repitelización/genética , Receptores CXCR6/metabolismo , Piel/metabolismo , Animales , Transdiferenciación Celular/genética , Quimiocina CXCL16/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/genética , Receptores CXCR6/genética , Transfección , Trasplante Homólogo/métodos , Resultado del Tratamiento
18.
Ann Surg ; 271(6): 1174-1185, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-30614873

RESUMEN

OBJECTIVE: The objective of this work was to causatively link biofilm properties of bacterial infection to specific pathogenic mechanisms in wound healing. BACKGROUND: Staphylococcus aureus is one of the four most prevalent bacterial species identified in chronic wounds. Causatively linking wound pathology to biofilm properties of bacterial infection is challenging. Thus, isogenic mutant stains of S. aureus with varying degree of biofilm formation ability was studied in an established preclinical porcine model of wound biofilm infection. METHODS: Isogenic mutant strains of S. aureus with varying degree (ΔrexB > USA300 > ΔsarA) of biofilm-forming ability were used to infect full-thickness porcine cutaneous wounds. RESULTS: Compared with that of ΔsarA infection, wound biofilm burden was significantly higher in response to ΔrexB or USA300 infection. Biofilm infection caused degradation of cutaneous collagen, specifically collagen 1 (Col1), with ΔrexB being most pathogenic in that regard. Biofilm infection of the wound repressed wound-edge miR-143 causing upregulation of its downstream target gene matrix metalloproteinase-2. Pathogenic rise of collagenolytic matrix metalloproteinase-2 in biofilm-infected wound-edge tissue sharply decreased collagen 1/collagen 3 ratio compromising the biomechanical properties of the repaired skin. Tensile strength of the biofilm infected skin was compromised supporting the notion that healed wounds with a history of biofilm infection are likely to recur. CONCLUSION: This study provides maiden evidence that chronic S. aureus biofilm infection in wounds results in impaired granulation tissue collagen leading to compromised wound tissue biomechanics. Clinically, such compromise in tissue repair is likely to increase wound recidivism.


Asunto(s)
Biopelículas , Colágeno/metabolismo , Tejido de Granulación/metabolismo , Staphylococcus aureus/aislamiento & purificación , Cicatrización de Heridas/fisiología , Infección de Heridas/microbiología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Tejido de Granulación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones Estafilocócicas/microbiología , Porcinos , Infección de Heridas/diagnóstico
19.
FASEB J ; 33(2): 2144-2155, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30260708

RESUMEN

Decellularized matrices of biologic tissue have performed well as wound care dressings. Extracellular matrix-based dressings are subject to rapid degradation by excessive protease activity at the wound environment. Stabilized, acellular, equine pericardial collagen matrix (sPCM) wound care dressing is flexible cross-linked proteolytic enzyme degradation resistant. sPCM was structurally characterized utilizing scanning electron and atomic force microscopy. In murine excisional wounds, sPCM was effective in mounting an acute inflammatory response. Postwound inflammation resolved rapidly, as indicated by elevated levels of IL-10, arginase-1, and VEGF, and lowering of IL-1ß and TNF-α. sPCM induced antimicrobial proteins S100A9 and ß-defensin-1 in keratinocytes. Adherence of Pseudomonas aeruginosa and Staphylococcus aureus on sPCM pre-exposed to host immune cells in vivo was inhibited. Excisional wounds dressed with sPCM showed complete closure at d 14, while control wounds remained open. sPCM accelerated wound re-epithelialization. sPCM not only accelerated wound closure but also improved the quality of healing by increased collagen deposition and maturation. Thus, sPCM is capable of presenting scaffold functionality during the course of wound healing. In addition to inducing endogenous antimicrobial defense systems, the dressing itself has properties that minimize biofilm formation. It mounts robust inflammation, a process that rapidly resolves, making way for wound healing to advance.-El Masry, M. S., Chaffee, S., Das Ghatak, P., Mathew-Steiner, S. S., Das, A., Higuita-Castro, N., Roy, S., Anani, R. A., Sen, C. K. Stabilized collagen matrix dressing improves wound macrophage function and epithelialization.


Asunto(s)
Vendajes , Colágeno/farmacología , Matriz Extracelular/metabolismo , Inflamación/prevención & control , Queratinocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Repitelización , Cicatrización de Heridas/efectos de los fármacos , Animales , Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Células Cultivadas , Modelos Animales de Enfermedad , Caballos , Humanos , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Queratinocitos/metabolismo , Queratinocitos/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
20.
Am J Physiol Gastrointest Liver Physiol ; 317(4): G441-G446, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31343254

RESUMEN

Mesenteric ischemia is a devastating process that can result in intestinal necrosis. Mesenchymal stem cells (MSCs) are becoming a promising treatment modality. We hypothesized that 1) MSCs would promote vasodilation of mesenteric arterioles, 2) hydrogen sulfide (H2S) would be a critical paracrine factor of stem cell-mediated vasodilation, 3) mesenteric vasodilation would be impaired in the absence of endothelial nitric oxide synthase (eNOS) within the host tissue, and 4) MSCs would improve the resistin-to-adiponectin ratio in mesenteric vessels. H2S was measured with a specific fluorophore (7-azido-3-methylcoumarin) in intact MSCs and in cells with the H2S-producing enzyme cystathionine ß synthase (CBS) knocked down with siRNA. Mechanical responses of isolated second- and third-order mesenteric arteries (MAs) from wild-type and eNOS knockout (eNOSKO) mice were monitored with pressure myography, after which the vessels were snap frozen and later analyzed for resistin and adiponectin via multiplex beaded assay. Addition of MSCs to the myograph bath significantly increased vasodilation of norepinephrine-precontracted MAs. Knockdown of CBS in MSCs decreased H2S production by MSCs and also decreased MSC-initiated MA dilation. MSC-initiated vasodilation was further reduced in eNOSKO vessels. The MA resistin-to-adiponectin ratio was higher in eNOSKO vessels compared with wild-type. These results show that MSC treatment promotes dilation of MAs by an H2S-dependent mechanism. Furthermore, functional eNOS within the host mesenteric bed appears to be essential for maximum stem cell therapeutic benefit, which may be attributable, in part, to modifications in the resistin-to-adiponectin ratio.NEW & NOTEWORTHY Stem cells have been shown to improve survival, mesenteric perfusion, and histological injury scores following intestinal ischemia. These benefits may be due to the paracrine release of hydrogen sulfide. In an ex vivo pressure myography model, we observed that mesenteric arterial dilation improved with stem cell treatment. Hydrogen sulfide release from stem cells and endothelial nitric oxide synthase within the vessels were critical components of optimizing stem cell-mediated mesenteric artery dilation.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Células Madre Mesenquimatosas/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Circulación Esplácnica/fisiología , Vasodilatación/fisiología , Adiponectina/metabolismo , Animales , Arteriolas/fisiología , Cistationina betasintasa/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Técnicas In Vitro , Masculino , Isquemia Mesentérica , Ratones , Ratones Endogámicos C57BL , Resistina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA