Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 16(26): 12650-12659, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38887047

RESUMEN

We report hydrostatic pressure-induced reversible phase transformation in maghemite γ-Fe2O3 nanoparticles (cubic → tetragonal → cubic) using an in situ diamond anvil cell (DAC) technique. Thermal arc plasma-synthesized nanoparticles, particularly in a He gas medium, exhibit the reversible phase transformation under pressure ranging from 0 to 2.58 GPa. Rietveld refinement reflects that cubic to tetragonal maghemite phase transformation coexists with a cubic metallic Fe phase at 0.55 GPa pressure. The generation of two new superlattice reflections at 6.93° and 8.11°, respectively, reflects the phase transformation. The presence of a core-shell-type nanostructure observed from transmission electron microscopy micrographs is found to exhibit a spin glass shell-type behavior. This triggers pressure-induced fluctuating magnetization and interparticle interaction-induced surface anisotropy and spin disorder with broken bonds, translational symmetry, and incomplete coordination. This leads to overcoming the nucleation barrier at the surface, subsequently denser nucleation sites and increased nucleation probability. This further leads to an atomic rearrangement and tetragonality in the maghemite phase. Furthermore, with increasing pressure, the reversible structural change, i.e. from the tetragonal to cubic maghemite phase, has been explained in the light of the "internal stress model". The grains are again forced back to the cubic phase via generation of uniform compression along the c-axis and tension along the a and b axes. The spin glass behavior of the core-shell nanostructure along with the "internal stress model" explain the whole reversible phase transformation phenomenon in the γ-Fe2O3 phase.

2.
ACS Omega ; 9(8): 9835-9846, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434883

RESUMEN

The impact of different synthesis parameters, such as thickness, postsynthesis annealing temperature, and oxygen gas flow rate, upon the electronic structure is discussed in detail in the present experimental investigation. X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) spectroscopy techniques are used to evaluate the surface electronic properties along with the presence and stability of the CdO2 surface oxide in CdxZn1-xO (x = 0.4) composite thin films. The thin films were synthesized with varying thicknesses using a Cd0.4Zn0.6O (CZO) ceramic and Cd0.4Zn0.6 (CZ) metallic targets and oxygen gas flow rates during magnetron sputtering. The Zn L3,2 edge and O K edge XANES spectra are affected by the oxygen gas flow rate. For the zero rate, an increase in intensity is observed in the Zn L3,2 edge, and notable changes occur in the overall spectral features of the O K edge. In the films synthesized in the presence of oxygen, highly probable O 2p → antibonding Zn 3d electronic transitions decrease the probability of the Zn 2p1/2 → antibonding Zn 3d electronic transition by filling the vacant antibonding Zn 3d states, leading to the reduction in overall intensity in the Zn L3,2 edge. Scanning electron microscopy reveals grain growth with increasing annealing temperature. The annealing induces orbital hybridization, generating new electronic states with higher transition probabilities and intensity enhancement in both Zn L3,2 and O K edges. The presence of the CdO2 surface phase is confirmed by analyzing the Cd 3d5/2 and O 1s XPS core levels. The CdO2 surface phase is observed in the films synthesized using the CZO target for all thicknesses, while the CZ target is only observed for higher thicknesses. Further postsynthesis annealing treatment results in the disappearance of the CdO2 phase. The CdO2 surface phase can be controlled by varying the film thickness and postsynthesis annealing temperature.

3.
Materials (Basel) ; 17(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38930251

RESUMEN

This study investigates the simultaneous decoration of vertically aligned molybdenum disulfide nanostructure (VA-MoS2) with Ag nanoparticles (NPs) and nitrogen functionalization. Nitrogen functionalization was achieved through physical vapor deposition (PVD) DC-magnetron sputtering using nitrogen as a reactive gas, aiming to induce p-type behavior in MoS2. The utilization of reactive sputtering resulted in the growth of three-dimensional silver structures on the surface of MoS2, promoting the formation of silver nanoparticles. A comprehensive characterization was conducted to assess surface modifications and analyze chemical and structural changes. X-ray photoelectron spectroscopy (XPS) showed the presence of silver on the MoS2 surface. Scanning electron microscopy (SEM) confirmed successful decoration with silver nanoparticles, showing that deposition time affects the size and distribution of the silver on the MoS2 surface.

4.
ACS Sens ; 9(8): 4079-4088, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39057835

RESUMEN

Ambient pressure X-ray photoelectron spectroscopy (APXPS) is combined with simultaneous electrical measurements and supported by density functional theory calculations to investigate the sensing mechanism of tungsten disulfide (WS2)-based gas sensors in an operando dynamic experiment. This approach allows for the direct correlation between changes in the surface potential and the resistivity of the WS2 sensing active layer under realistic operating conditions. Focusing on the toxic gases NO2 and NH3, we concurrently demonstrate the distinct chemical interactions between oxidizing or reducing agents and the WS2 active layer and their effect on the sensor response. The experimental setup mimics standard electrical measurements on chemiresistors, exposing the sample to dry air and introducing the target gas analyte at different concentrations. This methodology applied to NH3 concentrations of 100, 230, and 760 and 14 ppm of NO2 establishes a benchmark for future APXPS studies on sensing devices, providing fast acquisition times and a 1:1 correlation between electrical response and spectroscopy data in operando conditions. Our findings contribute to a deeper understanding of the sensing mechanism in 2D transition metal dichalcogenides, paving the way for optimizing chemiresistor sensors for various industrial applications and wireless platforms with low energy consumption.


Asunto(s)
Amoníaco , Espectroscopía de Fotoelectrones , Amoníaco/análisis , Amoníaco/química , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/química , Compuestos de Tungsteno/química , Teoría Funcional de la Densidad , Presión , Gases/análisis , Gases/química , Tungsteno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA