Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 162(5): 1140-54, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26317474

RESUMEN

Axonal branching contributes substantially to neuronal circuit complexity. Studies in Drosophila have shown that loss of Dscam1 receptor diversity can fully block axon branching in mechanosensory neurons. Here we report that cell-autonomous loss of the receptor tyrosine phosphatase 69D (RPTP69D) and loss of midline-localized Slit inhibit formation of specific axon collaterals through modulation of Dscam1 activity. Genetic and biochemical data support a model in which direct binding of Slit to Dscam1 enhances the interaction of Dscam1 with RPTP69D, stimulating Dscam1 dephosphorylation. Single-growth-cone imaging reveals that Slit/RPTP69D are not required for general branch initiation but instead promote the extension of specific axon collaterals. Hence, although regulation of intrinsic Dscam1-Dscam1 isoform interactions is essential for formation of all mechanosensory-axon branches, the local ligand-induced alterations of Dscam1 phosphorylation in distinct growth-cone compartments enable the spatial specificity of axon collateral formation.


Asunto(s)
Axones/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Proteínas Tirosina Fosfatasas Similares a Receptores/metabolismo , Animales , Moléculas de Adhesión Celular , Drosophila melanogaster/citología , Conos de Crecimiento/metabolismo
2.
EMBO J ; 38(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30745319

RESUMEN

DSCAM and DSCAML1 are immunoglobulin and cell adhesion-type receptors serving important neurodevelopmental functions including control of axon growth, branching, neurite self-avoidance, and neuronal cell death. The signal transduction mechanisms or effectors of DSCAM receptors, however, remain poorly characterized. We used a human ORFeome library to perform a high-throughput screen in mammalian cells and identified novel cytoplasmic signaling effector candidates including the Down syndrome kinase Dyrk1a, STAT3, USP21, and SH2D2A. Unexpectedly, we also found that the intracellular domains (ICDs) of DSCAM and DSCAML1 specifically and directly interact with IPO5, a nuclear import protein of the importin beta family, via a conserved nuclear localization signal. The DSCAM ICD is released by γ-secretase-dependent cleavage, and both the DSCAM and DSCAML1 ICDs efficiently translocate to the nucleus. Furthermore, RNA sequencing confirms that expression of the DSCAM as well as the DSCAML1 ICDs alone can profoundly alter the expression of genes associated with neuronal differentiation and apoptosis, as well as synapse formation and function. Gain-of-function experiments using primary cortical neurons show that increasing the levels of either the DSCAM or the DSCAML1 ICD leads to an impairment of neurite growth. Strikingly, increased expression of either full-length DSCAM or the DSCAM ICD, but not the DSCAML1 ICD, significantly decreases synapse numbers in primary hippocampal neurons. Taken together, we identified a novel membrane-to-nucleus signaling mechanism by which DSCAM receptors can alter the expression of regulators of neuronal differentiation and synapse formation and function. Considering that chromosomal duplications lead to increased DSCAM expression in trisomy 21, our findings may help uncover novel mechanisms contributing to intellectual disability in Down syndrome.


Asunto(s)
Transporte Activo de Núcleo Celular , Moléculas de Adhesión Celular/metabolismo , Núcleo Celular/metabolismo , Neuritas/fisiología , Sinapsis/fisiología , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Adhesión Celular , Moléculas de Adhesión Celular/genética , Núcleo Celular/genética , Células HEK293 , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Neuronas/metabolismo , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , beta Carioferinas/genética , beta Carioferinas/metabolismo
3.
Development ; 142(2): 394-405, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25503410

RESUMEN

Determining direct synaptic connections of specific neurons in the central nervous system (CNS) is a major technical challenge in neuroscience. As a corollary, molecular pathways controlling developmental synaptogenesis in vivo remain difficult to address. Here, we present genetic tools for efficient and versatile labeling of organelles, cytoskeletal components and proteins at single-neuron and single-synapse resolution in Drosophila mechanosensory (ms) neurons. We extended the imaging analysis to the ultrastructural level by developing a protocol for correlative light and 3D electron microscopy (3D CLEM). We show that in ms neurons, synaptic puncta revealed by genetically encoded markers serve as a reliable indicator of individual active zones. Block-face scanning electron microscopy analysis of ms axons revealed T-bar-shaped dense bodies and other characteristic ultrastructural features of CNS synapses. For a mechanistic analysis, we directly combined the single-neuron labeling approach with cell-specific gene disruption techniques. In proof-of-principle experiments we found evidence for a highly similar requirement for the scaffolding molecule Liprin-α and its interactors Lar and DSyd-1 (RhoGAP100F) in synaptic vesicle recruitment. This suggests that these important synapse regulators might serve a shared role at presynaptic sites within the CNS. In principle, our CLEM approach is broadly applicable to the developmental and ultrastructural analysis of any cell type that can be targeted with genetically encoded markers.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Imagenología Tridimensional/métodos , Mecanorreceptores/citología , Microscopía Electrónica de Rastreo/métodos , Genética Inversa/métodos , Sinapsis/fisiología , Sinapsis/ultraestructura , Animales , Drosophila , Inmunohistoquímica , Interferencia de ARN
4.
Curr Opin Neurobiol ; 79: 102690, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805717

RESUMEN

The highly heterogeneous nature of neuronal cell types and their connections presents a major challenge to the characterization of neural circuits at the protein level. New approaches now enable an increasingly sophisticated dissection of cell type- and cellular compartment-specific proteomes, as well as the profiling of the protein composition of specific synaptic connections. Here, we provide an overview of these approaches and discuss how they hold considerable promise toward unravelling the molecular mechanisms of neural circuit formation and function. Finally, we provide an outlook of technological developments that may bring the characterization of synaptic proteomes at the single-synapse level within reach.


Asunto(s)
Proteoma , Proteómica , Proteoma/metabolismo , Sinapsis/fisiología , Neuronas/fisiología , Vías Nerviosas/fisiología
5.
Neuron ; 109(18): 2864-2883.e8, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34384519

RESUMEN

The molecular and cellular mechanisms underlying complex axon morphogenesis are still poorly understood. We report a novel, evolutionary conserved function for the Drosophila Wnk kinase (dWnk) and its mammalian orthologs, WNK1 and 2, in axon branching. We uncover that dWnk, together with the neuroprotective factor Nmnat, antagonizes the axon-destabilizing factors D-Sarm and Axundead (Axed) during axon branch growth, revealing a developmental function for these proteins. Overexpression of D-Sarm or Axed results in axon branching defects, which can be blocked by overexpression of dWnk or Nmnat. Surprisingly, Wnk kinases are also required for axon maintenance of adult Drosophila and mouse cortical pyramidal neurons. Requirement of Wnk for axon maintenance is independent of its developmental function. Inactivation of dWnk or mouse Wnk1/2 in mature neurons leads to axon degeneration in the adult brain. Therefore, Wnk kinases are novel signaling components that provide a safeguard function in both developing and adult axons.


Asunto(s)
Proteínas del Dominio Armadillo/biosíntesis , Axones/metabolismo , Proteínas del Citoesqueleto/biosíntesis , Proteínas de Drosophila/biosíntesis , Evolución Molecular , Morfogénesis/fisiología , Proteínas Serina-Treonina Quinasas/biosíntesis , Animales , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/genética , Línea Celular Tumoral , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Embarazo , Proteínas Serina-Treonina Quinasas/genética
6.
Dev Cell ; 39(2): 267-278, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27780041

RESUMEN

The axonal wiring molecule Slit and its Round-About (Robo) receptors are conserved regulators of nerve cord patterning. Robo receptors also contribute to wiring brain circuits. Whether molecular mechanisms regulating these signals are modified to fit more complex brain wiring processes is unclear. We investigated the role of Slit and Robo receptors in wiring Drosophila higher-order brain circuits and identified differences in the cellular and molecular mechanisms of Robo/Slit function. First, we find that signaling by Robo receptors in the brain is regulated by the Receptor Protein Tyrosine Phosphatase RPTP69d. RPTP69d increases membrane availability of Robo3 without affecting its phosphorylation state. Second, we detect no midline localization of Slit during brain development. Instead, Slit is enriched in the mushroom body, a neuronal structure covering large areas of the brain. Thus, a divergent molecular mechanism regulates neuronal circuit wiring in the Drosophila brain, partly in response to signals from the mushroom body.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Red Nerviosa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurópilo/metabolismo , Proteínas Tirosina Fosfatasas Similares a Receptores/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal , Animales , Axones/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Epistasis Genética , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Larva/metabolismo , Complejos Multiproteicos/metabolismo , Cuerpos Pedunculados/metabolismo , Proteínas del Tejido Nervioso/genética , Fenotipo
7.
Science ; 344(6188): 1182-6, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24831526

RESUMEN

The isoform diversity of the Drosophila Dscam1 receptor is important for neuronal self-recognition and self-avoidance. A canonical model suggests that homophilic binding of identical Dscam1 receptor isoforms on sister dendrites ensures self-avoidance even when only a single isoform is expressed. We detected a cell-intrinsic function of Dscam1 that requires the coexpression of multiple isoforms. Manipulation of the Dscam1 isoform pool in single neurons caused severe disruption of collateral formation of mechanosensory axons. Changes in isoform abundance led to dominant dosage-sensitive inhibition of branching. We propose that the ratio of matching to nonmatching isoforms within a cell influences the Dscam1-mediated signaling strength, which in turn controls axon growth and growth cone sprouting. Cell-intrinsic use of surface receptor diversity may be of general importance in regulating axonal branching during brain wiring.


Asunto(s)
Axones/fisiología , Moléculas de Adhesión Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Isoformas de Proteínas/fisiología , Alelos , Animales , Moléculas de Adhesión Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Dosificación de Gen , Mecanotransducción Celular/genética , Mecanotransducción Celular/fisiología , Isoformas de Proteínas/genética , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA