Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Divers ; 27(5): 2037-2052, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36282413

RESUMEN

In our continued efforts to find potential chemotherapeutics active against drug-resistant (DR) Mycobacterium tuberculosis (Mtb), causative agent of Tuberculosis (TB) and to curb the current burdensome treatment regimen, herein we describe the synthesis and biological evaluation of urea and thiourea variants of 5-phenyl-3-isoxazolecarboxylic acid methyl esters as promising anti-TB agent. Majority of the tested compounds displayed potent in vitro activity not only against drug-susceptible (DS) Mtb H37Rv but also against drug-resistant (DR) Mtb. Cell viability test against Vero cells deemed these compounds devoid of significant toxicity. 3,4-Dichlorophenyl derivative (MIC 0.25 µg/mL) and 4-chlorophenyl congener (MIC 1 µg/mL) among urea and thiourea libraries respectively exhibited optimum potency. Lead optimization resulted in the identification of 1,4-linked analogue of 3,4-dichlorophenyl urea derivative demonstrating improved selectivity. Further, in silico study complemented with previously proposed prodrug like attributes of isoxazole esters. Taken together, this molecular hybridization approach presents a new chemotype having potential to be translated into an alternate anti-Mtb agent.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Animales , Chlorocebus aethiops , Antituberculosos/farmacología , Urea/farmacología , Células Vero , Relación Estructura-Actividad , Ácidos Carboxílicos/farmacología , Ésteres/farmacología , Tiourea/farmacología , Isoxazoles/farmacología , Pruebas de Sensibilidad Microbiana
2.
Antimicrob Agents Chemother ; 66(12): e0056422, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36445129

RESUMEN

Mycobacterial pathogens, including nontuberculous mycobacteria (NTM) and Mycobacterium tuberculosis, are pathogens of significant worldwide interest owing to their inherent drug resistance to a wide variety of FDA-approved drugs as well as causing a broad range of serious infections. Identifying new antibiotics active against mycobacterial pathogens is an urgent unmet need, especially those antibiotics that can bypass existing resistance mechanisms. In this study, we demonstrate that gepotidacin, a first-in-class triazaacenapthylene topoisomerase inhibitor, demonstrates potent activity against M. tuberculosis and M. fortuitum, as well as against other clinically relevant NTM species, including fluoroquinolone-resistant M. abscessus. Furthermore, gepotidacin exhibits concentration-dependent bactericidal activity against various mycobacterial pathogens, synergizes with several drugs utilized for their treatment, and reduces bacterial load in macrophages in intracellular killing assays comparably to amikacin. Additionally, M. fortuitum ATCC 6841 was unable to generate resistance to gepotidacin in vitro. When tested in a murine neutropenic M. fortuitum infection model, gepotidacin caused a significant reduction in bacterial load in various organs at a 10-fold lower concentration than amikacin. Taken together, these findings show that gepotidacin possesses a potentially new mechanism of action that enables it to escape existing resistance mechanisms. Thus, it can be projected as a potent novel lead for the treatment of mycobacterial infections, particularly for NTM, where present therapeutic interventions are extremely limited.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium tuberculosis , Neutropenia , Animales , Ratones , Amicacina/farmacología , Amicacina/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Micobacterias no Tuberculosas , Neutropenia/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
3.
Bioorg Med Chem ; 64: 116777, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35487101

RESUMEN

Ever increasing drug resistance has become an impeding threat that continues to hamper effective tackling of otherwise treatable tuberculosis (TB). Such dismal situation necessitates identification and exploration of multitarget acting newer chemotypes with bactericidal efficacy as a priority, that could efficiently hinder uncontrolled spread of TB. In this context, herein we present design, synthesis and bio-evaluation of chalcone tethered bezoxazole-2-amines as promising anti-TB chemotypes. Preliminary screening of 24 compounds revealed initial hits 3,4,5-trimethoxyphenyl and 5-nitrofuran-2-yl derivative exhibiting selective inhibition of Mycobacterium tuberculosis (Mtb) H37Rv. Further, structural optimization of hit compounds generated 12 analogues, amongst which 5-nitrofuran-2-yl derivatives displayed potent inhibition of not only drug-susceptible (DS) Mtb but also clinical isolates of drug-resistant (DR) Mtb strains equipotently. Moreover, cell viability test against Vero cells found these compounds with favourable selectivity. Time kill analysis led to the identification of the lead compound (E)-1-(4-((5-chlorobenzo[d]oxazol-2-yl)amino)phenyl)-3-(5-nitrofuran-2-yl)prop-2-en-1-one, that demonstrated bactericidal killing of Mtb bacilli. Together with acceptable microsomal stability, the lead compound of the series manifested all desirable traits of a promising antitubercular agent.


Asunto(s)
Mycobacterium tuberculosis , Nitrofuranos , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Aminas/farmacología , Animales , Antituberculosos/química , Benzoxazoles/farmacología , Chlorocebus aethiops , Pruebas de Sensibilidad Microbiana , Nitrofuranos/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Células Vero
4.
Drug Chem Toxicol ; 45(2): 850-860, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32543916

RESUMEN

The prolonged use of isoniazid (INH) - a highly effective drug in the treatment of tuberculosis - causes fatal liver injury. In order to overcome this adverse effect, a unique amide codrug was designed by covalently linking INH with sulfur-containing antioxidant- alpha-lipoic acid for possible hepatoprotective and antimycobacterial effect. Co-drug LI was prepared by Schotten Baumann reaction and was characterized by spectroscopic analysis. To check the bioreversibility of LI, in vitro release tests were conducted in buffers of specific pH, stomach, and intestinal homogenates of rat employing HPLC. Male Wistar rats were used for the evaluation of the hepatoprotective activity. Liver function markers, oxidative stress markers, and biochemical parameters were estimated. The antimycobacterial efficacy of LI was examined in terms of its ability to decrease the lung bacillary load in Balb/c mice infected intravenously with Mycobacterium tuberculosis. LI resisted hydrolysis in buffers of pH 1.2 (acidic), pH 7.4 (basic), and stomach homogenate of the rat while displayed significant hydrolysis (88.19%) in intestinal homogenates over a period of 6 h. The effect of LI on liver function, antioxidant and biochemical paradigms was remarkable as it reestablished the enzyme levels and restored hepatic cytoarchitecture representing its abrogating effect. The findings of antimycobacterial activity assessment evidently demonstrated that LI was as potent as INH in lowering the mycobacterial load in mice. The outcome of this exploration confirmed that the described co-drug can offer desirable safety and therapeutic benefit in the management of tuberculosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Preparaciones Farmacéuticas , Tuberculosis , Animales , Antioxidantes/farmacología , Antituberculosos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Isoniazida/toxicidad , Masculino , Ratones , Ratas , Ratas Wistar , Rifampin/toxicidad , Azufre
5.
Chem Biodivers ; 19(7): e202200324, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35653161

RESUMEN

In pursuit of potent anti-TB agents active against drug resistant tuberculosis (DR-TB), herein we report synthesis and bio-evaluation of a new series of isoxazole-carboxylic acid methyl ester based 2-substituted quinoline derivatives. Preliminary evaluation indicated selectivity towards Mtb H37Rv, with no inhibition of non-tubercular mycobacterial (NTM) & bacterial pathogen panel. Out of 36 synthesized compounds, majority exhibited substantial inhibition of Mtb H37Rv (MIC 0.5-8 µg/mL). Cell viability test against Vero cells revealed no significant cytotoxicity. Further, screening against drug resistant strains (DR-Mtb) found hit compound displaying promising potency (MIC 1-4 µg/mL). Structure optimization of the hit led to the identification of lead compound demonstrating potent inhibition of both drug-susceptible Mtb (MIC 0.12 µg/mL) and drug-resistant Mtb (MIC 0.25-0.5 µg/mL) along with a high selectivity index (SI) >80. Taken together, with appreciable selectivity and potent activity, these chemotypes show prospect to be turned into a potential anti-TB candidate.


Asunto(s)
Fármacos Dermatológicos , Mycobacterium tuberculosis , Animales , Antituberculosos , Ácidos Carboxílicos , Chlorocebus aethiops , Fármacos Dermatológicos/farmacología , Ésteres , Isoxazoles , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Células Vero
6.
Arch Pharm (Weinheim) ; 355(11): e2200168, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35876343

RESUMEN

The quinoline moiety remains a privileged antitubercular (anti-TB) pharmacophore, whereas 8-nitrobenzothiazinones are emerging potent antimycobacterial agents with two investigational candidates in the clinical pipeline. Herein, we report the synthesis and bioevaluation of 30 piperazinyl-benzothiazinone-based quinoline hybrids as prospective anti-TB agents. Preliminary evaluation revealed 24/30 compounds exhibiting substantial activity (minimum inhibitory concentration [MIC] = 0.06-1 µg/ml) against Mycobacterium tuberculosis (Mtb) H37Rv. Cytotoxicity analysis against Vero cells found these to be devoid of any significant toxicity, with the majority displaying a selectivity index of >80. Furthermore, potent nontoxic compounds, when screened against clinical isolates of drug-resistant Mtb strains, demonstrated equipotent inhibition with MIC values of 0.03-0.25 µg/ml. A time-kill study identified a lead compound exhibiting concentration-dependent bactericidal activity, with 10× MIC completely eliminating Mtb bacilli within 7 days. Along with acceptable aqueous solubility and microsomal stability, the optimum active compounds of the series manifested all desirable traits of a promising antimycobacterial candidate.


Asunto(s)
Mycobacterium tuberculosis , Quinolinas , Animales , Antituberculosos/farmacología , Chlorocebus aethiops , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Células Vero , Tiazinas/farmacología
7.
Biomacromolecules ; 22(6): 2659-2675, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33970615

RESUMEN

The long-term treatment of tuberculosis (TB) sometimes leads to nonadherence to treatment, resulting in multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. Inadequate bioavailability of the drug is the main factor for therapeutic failure, which leads to the development of drug-resistant cases. Therefore, there is an urgent need to design and develop novel antimycobacterial agents minimizing the period of treatment and reducing the propagation of resistance at the same time. Here, we report the development of original and noncytotoxic polycationic phosphorus dendrimers essentially of generations 0 and 1, but also of generations 2-4, with pyrrolidinium, piperidinium, and related cyclic amino groups on the surface, as new antitubercular agents active per se, meaning with intrinsic activity. The strategy is based on the phenotypic screening of a newly designed phosphorus dendrimer library (generations 0-4) against three bacterial strains: attenuated Mycobacterium tuberculosis H37Ra, virulent M. tuberculosis H37Rv, and Mangora bovis BCG. The most potent polycationic phosphorus dendrimers 1G0,HCl and 2G0,HCl are active against all three strains with minimum inhibitory concentrations (MICs) between 3.12 and 25.0 µg/mL. Both are irregularly shaped nanoparticles with highly mobile branches presenting a radius of gyration of 7 Å, a diameter of maximal 25 Å, and a solvent-accessible surface area of dominantly positive potential energy with very localized negative patches arising from the central N3P3 core, which steadily interacts with water molecules. The most interesting is 2G0,HCl, showing relevant efficacy against single-drug-resistant (SDR) M. tuberculosis H37Rv, resistant to rifampicin, isoniaid, ethambutol, or streptomycin. Importantly, 2G0,HCl displayed significant in vivo efficacy based on bacterial counts in lungs of infected Balb/C mice at a dose of 50 mg/kg oral administration once a day for 2 weeks and superior efficacy in comparison to ethambutol and rifampicin. This series of polycationic phosphorus dendrimers represents first-in-class drugs to treat TB infection, could fulfill the clinical candidate pipe of this high burden of infectious disease, and play a part in addressing the continuous demand for new drugs.


Asunto(s)
Dendrímeros , Mycobacterium tuberculosis , Tuberculosis , Animales , Antituberculosos/farmacología , Dendrímeros/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Tuberculosis/tratamiento farmacológico
8.
J Antimicrob Chemother ; 74(5): 1317-1322, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753528

RESUMEN

BACKGROUND: Non-tuberculous mycobacteria are emerging pathogens of significant worldwide interest because they have inherent drug resistance to a wide variety of FDA-approved drugs and cause a broad range of serious infections. In order to identify new drugs active against non-tuberculous mycobacteria, we identified disulfiram, utilized for treatment of alcohol dependence, as exhibiting potent growth-inhibitory activity against non-tuberculous mycobacteria. METHODS: Whole-cell growth inhibition assays were used to screen and identify novel inhibitors. The hit compounds were tested against Vero cells to determine the selectivity index, and this was followed by determining time-kill kinetics against Mycobacterium fortuitum and Mycobacterium abscessus. Disulfiram's ability to synergize with several approved drugs utilized for the treatment of M. fortuitum and M. abscessus was determined using fractional inhibitory concentration indexes followed by determining its ability to reduce mycobacterial infections ex vivo. Finally, disulfiram's in vivo potential was determined in a neutropenic murine model mimicking mycobacterial infection. RESULTS: We identified disulfiram as possessing potent antimicrobial activity against non-tuberculous mycobacteria. Disulfiram exhibited concentration- and time-dependent bactericidal activity against M. fortuitum as well as against M. abscessus and synergized with all drugs utilized for their treatment. Additionally, disulfiram reduced bacterial load in macrophages in an intracellular killing assay better than amikacin. When tested in a murine neutropenic M. fortuitum infection model, disulfiram caused significant reduction in bacterial load in kidneys. CONCLUSIONS: Disulfiram exhibits all properties required for it to be repositioned as a novel anti-mycobacterial therapy and possesses a potentially new mechanism of action. Thus, it can be considered as a potent structural lead for the treatment of non-tuberculous mycobacterial infections.


Asunto(s)
Antibacterianos/uso terapéutico , Disulfiram/uso terapéutico , Reposicionamiento de Medicamentos , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Micobacterias no Tuberculosas/efectos de los fármacos , Animales , Chlorocebus aethiops , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/efectos de los fármacos , Mycobacterium fortuitum/efectos de los fármacos , Neutropenia/tratamiento farmacológico , Neutropenia/microbiología , Micobacterias no Tuberculosas/crecimiento & desarrollo , Células Vero
9.
J Antimicrob Chemother ; 74(4): 912-920, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30689890

RESUMEN

BACKGROUND: The emergence of drug-resistant bacteria is a major hurdle for effective treatment of infections caused by Mycobacterium tuberculosis and ESKAPE pathogens. In comparison with conventional drug discovery, drug repurposing offers an effective yet rapid approach to identifying novel antibiotics. METHODS: Ethyl bromopyruvate was evaluated for its ability to inhibit M. tuberculosis and ESKAPE pathogens using growth inhibition assays. The selectivity index of ethyl bromopyruvate was determined, followed by time-kill kinetics against M. tuberculosis and Staphylococcus aureus. We first tested its ability to synergize with approved drugs and then tested its ability to decimate bacterial biofilm. Intracellular killing of M. tuberculosis was determined and in vivo potential was determined in a neutropenic murine model of S. aureus infection. RESULTS: We identified ethyl bromopyruvate as an equipotent broad-spectrum antibacterial agent targeting drug-susceptible and -resistant M. tuberculosis and ESKAPE pathogens. Ethyl bromopyruvate exhibited concentration-dependent bactericidal activity. In M. tuberculosis, ethyl bromopyruvate inhibited GAPDH with a concomitant reduction in ATP levels and transferrin-mediated iron uptake. Apart from GAPDH, this compound inhibited pyruvate kinase, isocitrate lyase and malate synthase to varying extents. Ethyl bromopyruvate did not negatively interact with any drug and significantly reduced biofilm at a 64-fold lower concentration than vancomycin. When tested in an S. aureus neutropenic thigh infection model, ethyl bromopyruvate exhibited efficacy equal to that of vancomycin in reducing bacterial counts in thigh, and at 1/25th of the dosage. CONCLUSIONS: Ethyl bromopyruvate exhibits all the characteristics required to be positioned as a potential broad-spectrum antibacterial agent.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Viabilidad Microbiana/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Piruvatos/farmacología , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Inhibidores Enzimáticos/administración & dosificación , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/antagonistas & inhibidores , Ratones Endogámicos BALB C , Piruvatos/administración & dosificación , Infecciones Estafilocócicas/tratamiento farmacológico , Transferrina/antagonistas & inhibidores , Resultado del Tratamiento
10.
Bioorg Chem ; 83: 569-579, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30471579

RESUMEN

Treatment of nosocomial and community acquired Staphylococcus aureus infections has become more challenging due to the egression of multi-drug resistance. This has spurred the need for rapid development of new therapeutic agents which can effectively negate the resistance mechanisms. In our current work, several new 4-oxoquinazolin-3(4H)-yl)benzoic acid and benzamide derivatives were synthesized and examined for their antimicrobial activity against ESKAP pathogen panel and pathogenic mycobacteria. In the primary screening, compounds 4a, 4b, 6'a, 6'b, 6'h, 6'i and 6'j were found to demonstrate selective and potent inhibitory activity against Staphylococcus aureus (MICs = 0.25-0.5 µg/mL). When tested against Vero cells, all the compounds were found to be non toxic possessing favourable selectivity index (SI > 10), which encouraged us for carrying out further studies. Compound 6'a (SI > 40) was tested against a number of multiple clinical strains of multi-drug resistant S. aureus and was found to exhibit potent activity, irrespective of the resistant status of the strain. Besides, compound 6'a also exhibited concentration dependent bactericidal activity and synergized with the FDA approved drugs tested. The interesting results obtained suggest the potential utility of the newly synthesized compounds for treatment of multidrug resistant S. aureus infections.


Asunto(s)
Antibacterianos/farmacología , Benzamidas/farmacología , Benzoatos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Quinazolinonas/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/toxicidad , Benzamidas/síntesis química , Benzamidas/química , Benzamidas/toxicidad , Benzoatos/síntesis química , Benzoatos/química , Benzoatos/toxicidad , Chlorocebus aethiops , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Quinazolinonas/síntesis química , Quinazolinonas/química , Quinazolinonas/toxicidad , Relación Estructura-Actividad , Células Vero
11.
Bioorg Chem ; 81: 175-183, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30130650

RESUMEN

Occurrence of infections due to the drug resistant Staphylococcus aureus is on rise necessitating the need for rapid development of new antibacterial agents. In our present work, a series of new 3-phenylquinazolin-4(3H)-one derivatives were designed, synthesized and evaluated for their antibacterial activity against ESKAP (E. coli, S. aureus, K. pneumoniae, A. baumannii, P. aeroginosa) pathogen panel and pathogenic mycobacterial strains. The study revealed that compounds 4a, 4c, 4e, 4f, 4g, 4i, 4o and 4p exhibited selective and potent inhibitory activity against Staphylococcus aureus with MIC values in the range of 0.125-8 µg/mL. Further, the compounds 4c, 4e and 4g were found to be non toxic to Vero cells (CC50 = >10->100 µg/mL) and exhibited favourable selectivity index (SI = 40->200). The compounds 4c, 4e and 4g also showed potent inhibitory activity against various MDR-S. aureus including VRSA. The promising results obtained indicated the potential use of the above series of compounds as promising antibacterial agents for the treatment of multidrug resistant Staphylococcus aureus infections.


Asunto(s)
Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Quinazolinonas/farmacología , Resistencia a la Vancomicina/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Quinazolinonas/síntesis química , Quinazolinonas/química , Relación Estructura-Actividad
12.
J Antimicrob Chemother ; 72(11): 3117-3121, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28961864

RESUMEN

BACKGROUND: Novel drug discovery against non-tuberculous mycobacteria is beset with a large number of challenges including the existence of myriad innate drug resistance mechanisms as well as a lack of suitable animal models, which hinders effective translation. In order to identify molecules acting via novel mechanisms of action, we screened the Library of Pharmacologically Active Compounds against non-tuberculous mycobacteria to identify such compounds. METHODS: Whole-cell growth inhibition assays were used to screen and identify novel inhibitors. The hit compounds were tested for cytotoxicity against Vero cells to determine the selectivity index, and time-kill kinetics were determined against Mycobacterium fortuitum. The compound's ability to synergize with amikacin, ceftriaxone, ceftazidime and meropenem was determined using fractional inhibitory concentration indexes followed by its ability to decimate mycobacterial infections ex vivo. Finally, the in vivo potential was determined in a neutropenic murine model mimicking mycobacterial infection. RESULTS: We have identified diphenyleneiodonium chloride (DPIC), an NADPH/NADH oxidase inhibitor, as possessing potent antimicrobial activity against non-tuberculous mycobacteria. DPIC exhibited concentration-dependent bactericidal activity against M. fortuitum and synergized with amikacin, ceftriaxone, ceftazidime and meropenem. When tested in a murine neutropenic M. fortuitum infection model, DPIC caused a significant reduction in bacterial load in kidney and spleen. The reduction in bacterial count is comparable to amikacin at a 100-fold lower concentration. CONCLUSIONS: DPIC exhibits all properties to be repositioned as a novel anti-mycobacterial therapy and possesses a potentially new mechanism of action. Thus, it can be projected as a potential new therapeutic against ever-increasing non-tuberculous mycobacterial infections.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Micobacterias no Tuberculosas/efectos de los fármacos , Compuestos Onio/farmacología , Compuestos Onio/uso terapéutico , Amicacina/farmacología , Animales , Carga Bacteriana/efectos de los fármacos , Chlorocebus aethiops , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Cinética , Meropenem , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/microbiología , Neutropenia , Micobacterias no Tuberculosas/crecimiento & desarrollo , Compuestos Onio/administración & dosificación , Bibliotecas de Moléculas Pequeñas , Tienamicinas/farmacología , Células Vero
13.
Bioorg Med Chem ; 23(4): 742-52, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25614114

RESUMEN

The mycobacterial F0F1-ATP synthase (ATPase) is a validated target for the development of tuberculosis (TB) therapeutics. Therefore, a series of eighteen novel compounds has been designed, synthesized and evaluated against Mycobacterium smegmatis ATPase. The observed ATPase inhibitory activities (IC50) of these compounds range between 0.36 and 5.45µM. The lead compound 9d [N-(7-chloro-2-methylquinolin-4-yl)-N-(3-((diethylamino)methyl)-4-hydroxyphenyl)-2,3-dichlorobenzenesulfonamide] with null cytotoxicity (CC50>300µg/mL) and excellent anti-mycobacterial activity and selectivity (mycobacterium ATPase IC50=0.51µM, mammalian ATPase IC50>100µM, and selectivity >200) exhibited a complete growth inhibition of replicating Mycobacterium tuberculosis H37Rv at 3.12µg/mL. In addition, it also exhibited bactericidal effect (approximately 2.4log10 reductions in CFU) in the hypoxic culture of non-replicating M. tuberculosis at 100µg/mL (32-fold of its MIC) as compared to positive control isoniazid [approximately 0.2log10 reduction in CFU at 5µg/mL (50-fold of its MIC)]. The pharmacokinetics of 9d after p.o. and IV administration in male Sprague-Dawley rats indicated its quick absorption, distribution and slow elimination. It exhibited a high volume of distribution (Vss, 0.41L/kg), moderate clearance (0.06L/h/kg), long half-life (4.2h) and low absolute bioavailability (1.72%). In the murine model system of chronic TB, 9d showed 2.12log10 reductions in CFU in both lung and spleen at 173µmol/kg dose as compared to the growth of untreated control group of Balb/C male mice infected with replicating M. tuberculosis H37Rv. The in vivo efficacy of 9d is at least double of the control drug ethambutol. These results suggest 9d as a promising candidate molecule for further preclinical evaluation against resistant TB strains.


Asunto(s)
Antituberculosos/química , Antituberculosos/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , ATPasas de Translocación de Protón/antagonistas & inhibidores , Quinolinas/química , Quinolinas/uso terapéutico , Tuberculosis/tratamiento farmacológico , Adenosina Trifosfato , Animales , Antituberculosos/farmacocinética , Antituberculosos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , Quinolinas/farmacocinética , Quinolinas/farmacología , Ratas Sprague-Dawley , Sulfonamidas/química , Sulfonamidas/farmacocinética , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Tuberculosis/microbiología
14.
Org Biomol Chem ; 12(35): 6855-68, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-25050482

RESUMEN

Principle guided design of glycan processing enzyme inhibitors involves embedding aromatic groups onto charge and shape mimics. Intramolecular azide-alkyne cycloaddition was used as a simple and versatile strategy for the synthesis of novel condensed bicyclic triazoles from carbohydrate derived Perlin aldehydes. These newly synthesised molecules were evaluated for glycosidase inhibition against 11 commercially available enzymes and were found to possess significant affinity (micromolar range) as well as high degree of selectivity for α-glucosidases. Conformational restriction was identified as an important tool to customize the selectivity of enzyme inhibition by five-membered iminosugars.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores de Glicósido Hidrolasas/química , alfa-Glucosidasas/química , Alcaloides/química , Química Farmacéutica/métodos , Diseño de Fármacos , Humanos , Hipoglucemiantes/química , Iminoazúcares/química , Concentración 50 Inhibidora , Cinética , Conformación Molecular , Estructura Molecular , Oryza/enzimología , Unión Proteica , Triazoles/química
15.
Int J Biol Macromol ; 263(Pt 2): 130455, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417748

RESUMEN

Rv1176c of Mycobacterium tuberculosis H37Rv belongs to the PadR-s1 subfamily of the PadR family of protein. Rv1176c forms a stable dimer in solution. Its stability is characterized by a thermal melting transition temperature (Tm) of 39.4 °C. The crystal structure of Rv1176c was determined at a resolution of 2.94 Å, with two monomers in the asymmetric unit. Each monomer has a characteristic N-terminal winged-helix-turn-helix DNA-binding domain. Rv1176c C-terminal is a coiled-coil dimerization domain formed of α-helices α5 to α7. In the Rv1176c dimer, there is domain-swapping of the C-terminal domain in comparison to other PadR homologs. In the dimer, there is a long inter-subunit tunnel in which different ligands can bind. Rv1176c was found to bind to the promoter region of its own gene with high specificity. M. smegmatis MC2 155 genome lacks homolog of Rv1176c. Therefore, it was used as a surrogate to characterize the functional role of Rv1176c. Expression of Rv1176c in M. smegmatis MC2 155 cells imparted enhanced tolerance towards oxidative stress. Rv1176c expressing M. smegmatis MC2 155 cells exhibited enhanced intracellular survival in J774A.1 murine macrophage cells. Overall, our studies demonstrate Rv1176c to be a PadR-s1 subfamily transcription factor that can moderate the effect of oxidative stress.


Asunto(s)
Mycobacterium tuberculosis , Animales , Ratones , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Cristalografía por Rayos X , Factores de Transcripción/genética
16.
Biomed Pharmacother ; 173: 116289, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452653

RESUMEN

Mycobacterium tuberculosis (Mtb), causative agent of tuberculosis (TB) and non-tubercular mycobacterial (NTM) pathogens such as Mycobacterium abscessus are one of the most critical concerns worldwide due to increased drug-resistance resulting in increased morbidity and mortality. Therefore, focusing on developing novel therapeutics to minimize the treatment period and reducing the burden of drug-resistant Mtb and NTM infections are an urgent and pressing need. In our previous study, we identified anti-mycobacterial activity of orally bioavailable, non-cytotoxic, polycationic phosphorus dendrimer 2G0 against Mtb. In this study, we report ability of 2G0 to potentiate activity of multiple classes of antibiotics against drug-resistant mycobacterial strains. The observed synergy was confirmed using time-kill kinetics and revealed significantly potent activity of the combinations as compared to individual drugs alone. More importantly, no re-growth was observed in any tested combination. The identified combinations were further confirmed in intra-cellular killing assay as well as murine model of NTM infection, where 2G0 potentiated the activity of all tested antibiotics significantly better than individual drugs. Taken together, this nanoparticle with intrinsic antimycobacterial properties has the potential to represents an alternate drug candidate and/or a novel delivery agent for antibiotics of choice for enhancing the treatment of drug-resistant mycobacterial pathogens.


Asunto(s)
Dendrímeros , Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Antibacterianos/farmacología , Dendrímeros/farmacología , Preparaciones Farmacéuticas , Tuberculosis/microbiología
17.
RSC Med Chem ; 15(4): 1381-1391, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38665829

RESUMEN

The emergence of antibiotic resistance to S. aureus and M. tuberculosis, particularly MRSA, VRSA, and drug-resistant tuberculosis, poses a serious threat to human health. Towards discovering new antibacterial agents, we designed and synthesized a series of new naphthalimide-thiourea derivatives and evaluated them against a panel of bacterial strains consisting of E. coli, S. aureus, K. pneumoniae, P. aeruginosa, A. baumannii and various mycobacterial pathogens. Compounds 4a, 4l, 4m, 4n, 4q, 9f, 9l, 13a, 13d, 13e, 17a, 17b, 17c, 17d, and 17e demonstrated potent antibacterial activity against S. aureus with MIC 0.03-8 µg mL-1. In addition, these compounds have also exhibited potent inhibition against MDR strains of S. aureus, including VRSA with MICs 0.06-4 µg mL-1. Compounds 4h, 4j, 4l, 4m, 4q, 4r, 9a, 9b, 9c, 9d, 9e, 9g, 9h, 9j, 13f and 17e also exhibited good antimycobacterial activity against M. tuberculosis with MIC 2-64 µg mL-1. The cytotoxicity assay using Vero cells revealed that all the compounds were non-toxic and exhibited a favorable selectivity index (SI >40). Time kill kinetics data indicated that compounds exhibited concentration-dependent killing. Furthermore, in silico studies were performed to decipher the possible mechanism of action. Comprehensively, these results highlight the potential of naphthalimide-thiourea derivatives as promising antibacterial agents.

18.
J Control Release ; 360: 578-590, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37442202

RESUMEN

Tuberculosis is a challenging disease due to the intracellular residence of its pathogen, Mycobacterium tuberculosis, and modulation of the host bactericidal responses. Lipids from Mycobacterium tuberculosis regulate macrophage immune responses dependent on the infection stage and intracellular location. We show that liposomes constituted with immunostimulatory lipids from mycobacteria modulate the cellular immune response and synergize with sustained drug delivery for effective pathogen eradication. We evaluate the pH-dependent release of Rifampicin from the mycobacterial-lipid-derived liposomes intracellularly and in vitro, their cell viability, long-term stability, and antimicrobial efficacy. Intracellular drug levels were higher following liposome treatment compared with the free drug in a temporal fashion underlying a sustained release. The drug-encapsulated liposomes were taken up by clathrin-mediated endocytosis and elicited a robust pro-inflammatory immune response while localizing in the recycling and late endosomes. Notably, these were the same cellular compartments that contained the pathogen underlying localized intracellular targeting. Our results also imply a lipid-centric and species-specific selectivity of the liposomal drug formulations. This work provides a proof-of-concept for the dual-action of liposomes derived from the pathogen itself for their effective eradication, in conjunction with the attuned host immunomodulation.


Asunto(s)
Liposomas , Mycobacterium tuberculosis , Agentes Inmunomoduladores , Sistemas de Liberación de Medicamentos/métodos , Lípidos , Endosomas
19.
Eur J Med Chem ; 260: 115757, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659197

RESUMEN

A series of pyrrole-thiazolidinone hybrids was designed, synthesized and evaluated for activities against ESKAP bacteria panel and mycobacterial pathogens. From the series, compound 9d showed prominent activity against S. aureus (MIC = 0.5 µg/mL) and compound 9k showed the most promising activity against M. tuberculosis H37Rv (MIC = 0.5 µg/mL). Potent derivatives were found to be non-toxic when tested against Vero cells. Compound 9d upon evaluation in vitro against several MRSA and VRSA strains produced activity comparable or better than standard drugs. In the anti-biofilm assay, 9d reduced S. aureus biofilm by >11% at 10x MIC. The dual inhibitory effect exhibited by pyrrole-thiazolidinone hybrids confirms their potential as new class of promising anti-infective agents.


Asunto(s)
Antiinfecciosos , Mycobacterium tuberculosis , Chlorocebus aethiops , Animales , Staphylococcus aureus , Células Vero , Biopelículas , Pirroles/farmacología
20.
RSC Med Chem ; 14(7): 1296-1308, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37484564

RESUMEN

The urgent development of newer alternatives has been deemed a panacea for tackling emerging antimicrobial resistance effectively. Herein, we report the design, synthesis, and biological evaluation of 1,3-diaryl substituted pyrazole-based urea and thiourea derivatives as antimicrobial agents. Preliminary screening results revealed that compound 7a (3,4-dichlorophenyl derivative) exhibited potent activity against S. aureus (MIC = 0.25 µg mL-1) and compound 7j (2,4-difluorophenyl derivative) against Mycobacterium tuberculosis (MIC = 1 µg mL-1). Compounds 7a and 7j were non-toxic to Vero cells with a favorable selectivity index of 40 and 200, respectively, and demonstrated good microsomal stability. Compound 7a exhibited equipotent activity (MIC = 0.25 µg mL-1) against various multidrug-resistant strains of S. aureus, which include various strains of MRSA and VRSA, and elicited bacteriostatic properties. In an enzymatic assay, 7a effectively inhibited DNA gyrase supercoiling activity at a concentration of 8 times MIC. Further, molecular modeling studies suggested that compound 7a binds at the active site of DNA gyrase with good affinity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA