RESUMEN
Converging theoretical frameworks suggest a role and a therapeutic potential for spinal interoceptive pathways in major depressive disorder (MDD). Here, we aimed to evaluate the antidepressant effects and tolerability of transcutaneous spinal direct current stimulation (tsDCS) in MDD. This was a double-blind, randomized, sham-controlled, parallel group, pilot clinical trial in unmedicated adults with moderate MDD. Twenty participants were randomly allocated (1:1 ratio) to receive "active" 2.5 mA or "sham" anodal tsDCS sessions with a thoracic (anode; T10)/right shoulder (cathode) electrode montage 3 times/week for 8 weeks. Change in depression severity (MADRS) scores (prespecified primary outcome) and secondary clinical outcomes were analyzed with ANOVA models. An E-Field model was generated using the active tsDCS parameters. Compared to sham (n = 9), the active tsDCS group (n = 10) showed a greater baseline to endpoint decrease in MADRS score with a large effect size (-14.6 ± 2.5 vs. -21.7 ± 2.3, p = 0.040, d = 0.86). Additionally, compared to sham, active tsDCS induced a greater decrease in MADRS "reported sadness" item (-1.8 ± 0.4 vs. -3.2 ± 0.4, p = 0.012), and a greater cumulative decrease in pre/post tsDCS session diastolic blood pressure change from baseline to endpoint (group difference: 7.9 ± 3.7 mmHg, p = 0.039). Statistical trends in the same direction were observed for MADRS "pessimistic thoughts" item and week-8 CGI-I scores. No group differences were observed in adverse events (AEs) and no serious AEs occurred. The current flow simulation showed electric field at strength within the neuromodulation range (max. ~0.45 V/m) reaching the thoracic spinal gray matter. The results from this pilot study suggest that tsDCS is feasible, well-tolerated, and shows therapeutic potential in MDD. This work also provides the initial framework for the cautious exploration of non-invasive spinal cord neuromodulation in the context of mental health research and therapeutics. The underlying mechanisms warrant further investigation. Clinicaltrials.gov registration: NCT03433339 URL: https://clinicaltrials.gov/ct2/show/NCT03433339 .
Asunto(s)
Trastorno Depresivo Mayor , Estimulación de la Médula Espinal , Humanos , Trastorno Depresivo Mayor/terapia , Trastorno Depresivo Mayor/fisiopatología , Masculino , Femenino , Adulto , Proyectos Piloto , Método Doble Ciego , Estimulación de la Médula Espinal/métodos , Persona de Mediana Edad , Resultado del TratamientoRESUMEN
BACKGROUND: Many individuals with progressive multiple sclerosis (PMS) are challenged by reduced manual dexterity and limited rehabilitation options. Transcranial direct current stimulation (tDCS) during motor training can improve rehabilitation outcomes. We developed a protocol for remotely supervising tDCS to deliver sessions of stimulation paired with training at home. OBJECTIVE: This study evaluated the effectiveness of at-home tDCS paired with manual dexterity training for individuals with PMS. METHODS: Sixty-five right-hand dominant participants with PMS and hand impairment were randomized to receive either active or sham M1-SO tDCS paired with manual dexterity training over 4 weeks. Clinical outcomes were measured by the changes in Nine-Hole Peg Test (9-HPT) and Dellon-Modified-Moberg-Pick-Up Test (DMMPUT). RESULTS: The intervention had high rates of adherence and completion (98% of participants completed at least 18 of 20 sessions). The active tDCS group demonstrated significant improvement for the left hand compared with baseline in 9-HPT (-5.85 ± 6.19 vs -4.23 ± 4.34, p = 0.049) and DMMPUT (-10.62 ± 8.46 vs -8.97 ± 6.18, p = 0.049). The active tDCS group reported improvements in multiple sclerosis (MS)-related quality of life (mean increase: 5.93 ± 13.04 vs -0.05 ± -8.27; p = 0.04). CONCLUSION: At-home tDCS paired with manual dexterity training is effective for individuals with PMS, with M1-SO tDCS enhancing training outcomes and offering a promising intervention for improving and preserving hand dexterity.
Asunto(s)
Terapia por Ejercicio , Esclerosis Múltiple Crónica Progresiva , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Femenino , Persona de Mediana Edad , Masculino , Esclerosis Múltiple Crónica Progresiva/rehabilitación , Esclerosis Múltiple Crónica Progresiva/fisiopatología , Esclerosis Múltiple Crónica Progresiva/terapia , Método Doble Ciego , Adulto , Terapia por Ejercicio/métodos , Mano/fisiopatología , Anciano , Resultado del Tratamiento , Destreza Motora/fisiología , Terapia CombinadaRESUMEN
Galvanic Vestibular Stimulation (GVS) has been proposed as an alternative display modality to relay information without increasing demands on the visual or auditory sensory modalities of the wearer or in environments where those modalities cannot be used (e.g., covert night operations). We further investigated this concept with four experiments designed to test: (1) thresholds at which subjects could distinguish between different GVS current amplitudes and polarities, (2) thresholds at which different bipolar (i.e., sinusoidal waveform with current oscillating between left and right directions) current frequencies were distinguishable among room temperature, hot, cold, and windy environments, (3) effects of unipolar (i.e., sinusoidal waveform with current occurring in only the left or right direction) currents on balance performance, and (4) dual-task performance among frequency and polarity modulated GVS conditions during a concordant visual search task. Subjects reliably distinguished between current amplitudes that varied from a pedestal of ± 0.6 mA by a median of 0.03 mA (range of 0.02-0.32 mA) and between unipolar currents at a median amplitude of 0.55 mA (range of 0.32-0.83 mA). GVS frequency thresholds were robust to the environment conditions tested, with no statistical differences found. Sway and balance errors were increased with unipolar currents. GVS thresholds were not impacted by the dual-task paradigm, but the visual search scores were slightly elevated when congruently performing a polarity thresholding task. Overall findings continue to support GVS use as a display modality, but some limitations are noted, such as the use of unipolar currents under scenarios where postural control is important.
Asunto(s)
Equilibrio Postural , Postura , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Postura/fisiología , Equilibrio Postural/fisiología , Estimulación Eléctrica , Ambiente , Desempeño Psicomotor/fisiología , Vestíbulo del Laberinto/fisiología , Umbral Sensorial/fisiologíaRESUMEN
OBJECTIVE: This study aimed to assess whether non-invasive brain stimulation with transcranial alternating current stimulation at gamma-frequency (γ-tACS) applied over the precuneus can improve episodic memory and modulate cholinergic transmission by modulating cerebral rhythms in early Alzheimer's disease (AD). METHODS: In this randomized, double-blind, sham controlled, crossover study, 60 AD patients underwent a clinical and neurophysiological evaluation including assessment of episodic memory and cholinergic transmission pre and post 60 minutes treatment with γ-tACS targeting the precuneus or sham tACS. In a subset of 10 patients, EEG analysis and individualized modelling of electric field distribution were carried out. Predictors to γ-tACS efficacy were evaluated. RESULTS: We observed a significant improvement in the Rey Auditory Verbal Learning (RAVL) test immediate recall (p < 0.001) and delayed recall scores (p < 0.001) after γ-tACS but not after sham tACS. Face-name associations scores improved with γ-tACS (p < 0.001) but not after sham tACS. Short latency afferent inhibition, an indirect measure of cholinergic transmission, increased only after γ-tACS (p < 0.001). ApoE genotype and baseline cognitive impairment were the best predictors of response to γ-tACS. Clinical improvement correlated with the increase in gamma frequencies in posterior regions and with the amount of predicted electric field distribution in the precuneus. INTERPRETATION: Precuneus γ-tACS, able to increase γ-power activity on the posterior brain regions, showed a significant improvement of episodic memory performances, along with restoration of intracortical excitability measures of cholinergic transmission. Response to γ-tACS was dependent on genetic factors and disease stage. ANN NEUROL 2022;92:322-334.
Asunto(s)
Enfermedad de Alzheimer , Memoria Episódica , Estimulación Transcraneal de Corriente Directa , Enfermedad de Alzheimer/terapia , Encéfalo , Colinérgicos , Estudios Cruzados , HumanosRESUMEN
Background: The two-implant retained mandibular overdenture utilizing nonsplinted implants is a proven treatment modality for completely edentulous patients. However, a lacuna still exists regarding the suitability of mini dental implants for this purpose. The purpose of the study was to evaluate implant stability and crestal bone loss in single-piece mini dental implants loaded with immediate or conventional loading protocols to retain a mandibular overdenture. Method: Twenty-four completely edentulous patients were rehabilitated using conventional maxillary complete denture and a mandibular two-implant retained overdenture utilizing nonsplinted single piece mini implants. The implants were loaded with immediate or conventional loading protocols. Implant stability (with Periotest TM) and crestal bone loss (with radiovisiograph and radiographic grid) were evaluated at the time of loading and at one, two, and six months after loading. Statistical analysis was done with the Independent Samples "t" test and One-Way ANOVA. Results: Mean Periotest Values observed were significantly more negative in implants loaded with the conventional loading protocol. Crestal bone loss was significantly lesser in the immediate loading protocol but was still higher than the requisite 1.5 mm postulated by established criteria. Conclusion: Two single-piece nonsplinted mini implants may be sufficient to retain a mandibular overdenture utilizing the immediate loading protocol. Further studies with a longer duration of observation and larger sample size are required.
RESUMEN
Cerebellar ataxias represent a heterogeneous group of disabling disorders characterized by motor and cognitive disturbances, for which no effective treatment is currently available. In this randomized, double-blind, sham-controlled trial, followed by an open-label phase, we investigated whether treatment with cerebello-spinal transcranial direct current stimulation (tDCS) could improve both motor and cognitive symptoms in patients with neurodegenerative ataxia at short and long-term. Sixty-one patients were randomized in two groups for the first controlled phase. At baseline (T0), Group 1 received placebo stimulation (sham tDCS) while Group 2 received anodal cerebellar tDCS and cathodal spinal tDCS (real tDCS) for 5 days/week for 2 weeks (T1), with a 12-week (T2) follow-up (randomized, double-blind, sham controlled phase). At the 12-week follow-up (T2), all patients (Group 1 and Group 2) received a second treatment of anodal cerebellar tDCS and cathodal spinal tDCS (real tDCS) for 5 days/week for 2 weeks, with a 14-week (T3), 24-week (T4), 36-week (T5) and 52-week follow-up (T6) (open-label phase). At each time point, a clinical, neuropsychological and neurophysiological evaluation was performed. Cerebellar-motor cortex connectivity was evaluated using transcranial magnetic stimulation. We observed a significant improvement in all motor scores (scale for the assessment and rating of ataxia, international cooperative ataxia rating scale), in cognition (evaluated with the cerebellar cognitive affective syndrome scale), in quality-of-life scores, in motor cortex excitability and in cerebellar inhibition after real tDCS compared to sham stimulation and compared to baseline (T0), both at short and long-term. We observed an addon-effect after two repeated treatments with real tDCS compared to a single treatment with real tDCS. The improvement at motor and cognitive scores correlated with the restoration of cerebellar inhibition evaluated with transcranial magnetic stimulation. Cerebello-spinal tDCS represents a promising therapeutic approach for both motor and cognitive symptoms in patients with neurodegenerative ataxia, a still orphan disorder of any pharmacological intervention.
Asunto(s)
Cerebelo/fisiopatología , Cognición/fisiología , Destreza Motora/fisiología , Médula Espinal/fisiopatología , Ataxias Espinocerebelosas/terapia , Degeneraciones Espinocerebelosas/terapia , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Anciano , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Ataxias Espinocerebelosas/fisiopatología , Degeneraciones Espinocerebelosas/fisiopatología , Resultado del TratamientoRESUMEN
OBJECTIVE: We propose and assess galvanic vestibular stimulation (GVS) as a novel means to provide information dissociated from self-orientation. BACKGROUND: In modern user interfaces, visual and auditory modalities dominate information transfer so much that these "processing channels" become overloaded with information. Fortunately, the brain is capable of processing separate sensory sources in parallel enabling alternative display modalities to inform operators more effectively and without increasing cognitive strain. To date, the vestibular system, normally responsible for sensing self-orientation and helping with balance, has not been considered as a display modality. METHOD: Bilateral GVS was provided at 0.6 mA for 1-second intervals with moderately high-frequency sinusoidal waveforms, designed to not elicit sensations of self-motion. We assessed subjects' ability to differentiate between two cues of different frequencies. RESULTS: We found subjects were able to reliably distinguish between cues with an average just-noticeable difference threshold of only ±12 Hz (range across subjects: 5.4-19.6 Hz) relative to a pedestal cue of 50 Hz. Further, we found the GVS sensory modality to be robust to various environments: walking, standing, sitting, passive motion, and loud background noise. Finally, the application of the GVS cues did not have significant destabilizing effects when standing or walking. CONCLUSION: These results show that GVS may be an effective alternative display modality, using varying frequency to encode information. It is robust to various operational environments and non-destabilizing. APPLICATION: A fully functional display can convey information to operators of vehicles and other machinery as well as high-performance operators like astronauts and soldiers.
RESUMEN
OBJECTIVE: The objective of the study was to investigate transcranial wave propagation through two low-intensity focused ultrasound (LIFU)-based brain stimulation techniques-transcranial focused ultrasound stimulation (tFUS) and transcranial pulse stimulation (TPS). Although tFUS involves delivering long trains of acoustic pulses, the newly introduced TPS delivers ultrashort (â¼3 µs) pulses repeated at 4 Hz. Accordingly, only a single simulation study with limited geometry currently exists for TPS. We considered a high-resolution three-dimensional (3D) whole human head model in addition to water bath simulations. We anticipate that the results of this study will help researchers investigating LIFU have a better understanding of the effects of the two different techniques. APPROACH: With an objective to first reproduce previous computational results, we considered two spherical tFUS transducers that were previously modeled. We assumed identical parameters (geometry, position, and imaging data set) to demonstrate differences, purely because of the waveform considered. For simulations with a 3D head data set, we also considered a parabolic transducer that has been used for TPS delivery. RESULTS: Our initial results successfully verified previous modeling workflow. The tFUS distribution was characterized by the typical elliptical profile, with its major axis perpendicular to the face of the transducer. The TPS distribution resembled two mirrored meniscus profiles, with its widest diameter oriented parallel to the face of the transducer. The observed intensity value differences were theoretical because the two waveforms differ in both intensity and time. The consideration of a realistic 3D human head model resulted in only a minor distortion of the two waveforms. SIGNIFICANCE: This study simulated TPS administration using a 3D realistic image-derived data set. Although our comparison results are strictly limited to the model parameters and assumptions made, we were able to elucidate some clear differences between the two approaches. We hope this initial study will pave the way for systematic comparison between the two approaches in the future.
Asunto(s)
Encéfalo , Cráneo , Acústica , Encéfalo/fisiología , Simulación por Computador , Humanos , TransductoresRESUMEN
Impaired inhibitory control accompanied by enhanced salience attributed to drug-related cues, both associated with function of the dorsolateral prefrontal cortex (dlPFC), are hallmarks of drug addiction, contributing to worse symptomatology including craving. dlPFC modulation with transcranial direct current stimulation (tDCS) previously showed craving reduction in inpatients with cocaine use disorder (CUD). Our study aimed at assessing feasibility of a longer tDCS protocol in CUD (15 versus the common five/10 sessions) and replicability of previous results. In a randomized double-blind sham-controlled protocol, 17 inpatients with CUD were assigned to either a real-tDCS (right anodal/left cathodal) or a sham-tDCS condition for 15 sessions. Following the previous report, primary outcome measures were self-reported craving, anxiety, depression, and quality of life. Secondary measures included sleepiness, readiness to change drug use, and affect. We also assessed cognitive function including impulsivity. An 88% retention rate demonstrated feasibility. Partially supporting the previous results, there was a trend for self-reported craving to decrease in the real-tDCS group more than the sham-group, an effect that would reach significance with 15 subjects per group. Quality of life and impulsivity improved over time in treatment in both groups. Daytime sleepiness and readiness to change drug use showed significant Group × Time interactions whereby improvements were noted only in the real-tDCS group. One-month follow-up suggested transient effects of tDCS on sleepiness and craving. These preliminary results suggest the need for including more subjects to show a unique effect of real-tDCS on craving and examine the duration of this effect. After replication in larger sample sizes, increased vigilance and motivation to change drug use in the real-tDCS group may suggest fortification of dlPFC-supported executive functions.
Asunto(s)
Cocaína , Estimulación Transcraneal de Corriente Directa , Ansia , Método Doble Ciego , Humanos , Pacientes Internos , Corteza Prefrontal , Calidad de Vida , SomnolenciaRESUMEN
Understanding and reducing variability of response to transcranial direct current stimulation (tDCS) requires measuring what factors predetermine sensitivity to tDCS and tracking individual response to tDCS. Human trials, animal models, and computational models suggest structural traits and functional states of neural systems are the major sources of this variance. There are 118 published tDCS studies (up to October 1, 2018) that used fMRI as a proxy measure of neural activation to answer mechanistic, predictive, and localization questions about how brain activity is modulated by tDCS. FMRI can potentially contribute as: a measure of cognitive state-level variance in baseline brain activation before tDCS; inform the design of stimulation montages that aim to target functional networks during specific tasks; and act as an outcome measure of functional response to tDCS. In this systematic review, we explore methodological parameter space of tDCS integration with fMRI spanning: (a) fMRI timing relative to tDCS (pre, post, concurrent); (b) study design (parallel, crossover); (c) control condition (sham, active control); (d) number of tDCS sessions; (e) number of follow up scans; (f) stimulation dose and combination with task; (g) functional imaging sequence (BOLD, ASL, resting); and (h) additional behavioral (cognitive, clinical) or quantitative (neurophysiological, biomarker) measurements. Existing tDCS-fMRI literature shows little replication across these permutations; few studies used comparable study designs. Here, we use a representative sample study with both task and resting state fMRI before and after tDCS in a crossover design to discuss methodological confounds. We further outline how computational models of current flow should be combined with imaging data to understand sources of variability. Through the representative sample study, we demonstrate how modeling and imaging methodology can be integrated for individualized analysis. Finally, we discuss the importance of conducting tDCS-fMRI with stimulation equipment certified as safe to use inside the MR scanner, and of correcting for image artifacts caused by tDCS. tDCS-fMRI can address important questions on the functional mechanisms of tDCS action (e.g., target engagement) and has the potential to support enhancement of behavioral interventions, provided studies are designed rationally.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Cognición/fisiología , Humanos , Desempeño Psicomotor/fisiologíaRESUMEN
Human neuroimaging studies have consistently reported changes in cerebellar function and integrity in association with obesity. To date, however, the nature of this link has not been studied directly. Emerging evidence suggests a role for the cerebellum in higher cognitive functions through reciprocal connections with the prefrontal cortex. The purpose of this exploratory study was to examine appetite changes associated with noninvasive prefronto-cerebellar neuromodulation in obesity. Totally, 12 subjects with class I obesity (mean body mass index 32.9 kg/m2) underwent a randomized, single-blinded, sham-controlled, crossover study, during which they received transcranial direct current stimulation ((tDCS); active/sham) aimed at simultaneously enhancing the activity of the prefrontal cortex and decreasing the activity of the cerebellum. Changes in appetite (state and food-cue-triggered) and performance in a food-modified working memory task were evaluated. We found that active tDCS caused an increase in hunger and desire to eat following food-cue exposure. In line with these data, subjects also tended to make more errors during the working memory task. No changes in basic motor performance occurred. This study represents the first demonstration that prefronto-cerebellar neuromodulation can influence appetite in individuals with obesity. While preliminary, our findings support a potential role for prefronto-cerebellar pathways in the behavioral manifestations of obesity.
Asunto(s)
Apetito/fisiología , Cerebelo , Conducta Alimentaria/fisiología , Obesidad/fisiopatología , Obesidad/terapia , Corteza Prefrontal , Estimulación Transcraneal de Corriente Directa , Adulto , Estudios Cruzados , Femenino , Humanos , Masculino , Neurorretroalimentación , Neuroimagen , Proyectos Piloto , España/epidemiología , Resultado del TratamientoRESUMEN
BACKGROUND: Progressive cerebellar ataxia is a neurodegenerative disorder without effective treatment options that seriously hinders quality of life. Previously, transcranial direct current stimulation (tDCS) has been demonstrated to benefit cerebellar functions (including improved motor control, learning and emotional processing) in healthy individuals and patients with neurological disorders. While tDCS is an emerging therapy, multiple daily sessions are needed for optimal clinical benefit. This case study tests the symptomatic benefit of remotely supervised tDCS (RS-tDCS) for a patient with cerebellar ataxia. METHODS: We report a case of a 71-year-old female patient with progressive cerebellar ataxia, who presented with unsteady gait and balance impairment, treated with tDCS. tDCS was administered using our RS-tDCS protocol and was completed daily in the patient's home (Monday - Friday) with the help of a trained study technician. tDCS was paired with 20 min of simultaneous cognitive training, followed by 20 min of physical exercises directed by a physical therapist. Stimulation consisted of 20 min of 2.5 mA direct current targeting the cerebellum via an anodal electrode and a cathodal electrode placed over the right shoulder. The patient completed baseline and treatment end visits with neurological, cognitive, and motor (Lafayette Grooved Pegboard Test, 25 ft walk test and Timed Up and Go Test) assessments. RESULTS: The patient successfully completed sixty tDCS sessions, 59 of which were administered remotely at the patient's home with the use of real time supervision as enabled by video conferencing. Mild improvement was observed in the patient's gait with a 7% improvement in walking speed, which she completed without a walking-aid at treatment end, which was in stark contrast to her baseline assessment. Improvements were also achieved in manual dexterity, with an increase in pegboard scores bilaterally compared to baseline. CONCLUSIONS: Results from this case report suggest that consecutively administered tDCS treatments paired with cognitive and physical exercise hold promise for improving balance, gait, and manual dexterity in patients with progressive ataxia. Remotely supervised tDCS provides home access to enable the administration over an extended period. Further controlled study in a large group of those with cerebellar ataxia is needed to replicate these findings. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03049969 . Registered 10 February 2017- Retrospectively registered.
Asunto(s)
Ataxia Cerebelosa/rehabilitación , Telerrehabilitación/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Anciano , Femenino , Humanos , Resultado del TratamientoRESUMEN
OBJECTIVES: Non-invasive transcranial direct current stimulation (tDCS) over the motor cortex is broadly investigated to modulate functional outcomes such as motor function, sleep characteristics, or pain. The most common montages that use two large electrodes (25-35 cm2 ) placed over the area of motor cortex and contralateral supraorbital region (M1-SO montages) require precise measurements, usually using the 10-20 EEG system, which is cumbersome in clinics and not suitable for applications by patients at home. The objective was to develop and test novel headgear allowing for reproduction of the M1-SO montage without the 10-20 EEG measurements, neuronavigation, or TMS. MATERIALS AND METHODS: Points C3/C4 of the 10-20 EEG system is the conventional reference for the M1 electrode. The headgear was designed using an orthogonal, fixed-angle approach for connection of frontal and coronal headgear components. The headgear prototype was evaluated for accuracy and replicability of the M1 electrode position in 600 repeated measurements compared to manually determined C3 in 30 volunteers. Computational modeling was used to estimate brain current flow at the mean and maximum recorded electrode placement deviations from C3. RESULTS: The headgear includes navigational points for accurate placement and assemblies to hold electrodes in the M1-SO position without measurement by the user. Repeated measurements indicated accuracy and replicability of the electrode position: the mean [SD] deviation of the M1 electrode (size 5 × 5 cm) from C3 was 1.57 [1.51] mm, median 1 mm. Computational modeling suggests that the potential deviation from C3 does not produce a significant change in brain current flow. CONCLUSIONS: The novel approach to M1-SO montage using a fixed-angle headgear not requiring measurements by patients or caregivers facilitates tDCS studies in home settings and can replace cumbersome C3 measurements for clinical tDCS applications.
Asunto(s)
Estimulación Transcraneal de Corriente Directa/instrumentación , Adolescente , Adulto , Simulación por Computador , Electrodos , Electroencefalografía , Femenino , Humanos , Masculino , Corteza Motora , Neuronavegación , Estándares de Referencia , Reproducibilidad de los Resultados , Estimulación Transcraneal de Corriente Directa/métodos , Adulto JovenRESUMEN
BACKGROUND: Fatigue is a common and debilitating feature of multiple sclerosis (MS) that remains without reliably effective treatment. Transcranial direct current stimulation (tDCS) is a promising option for fatigue reduction. We developed a telerehabilitation protocol that delivers tDCS to participants at home using specially designed equipment and real-time supervision (remotely supervised transcranial direct current stimulation (RS-tDCS)). OBJECTIVE: To evaluate whether tDCS can reduce fatigue in individuals with MS. METHODS: Dorsolateral prefrontal cortex left anodal tDCS was administered using a RS-tDCS protocol, paired with 20 minutes of cognitive training. Here, two studies are considered. Study 1 delivered 10 open-label tDCS treatments (1.5 mA; n = 15) compared to a cognitive training only condition ( n = 20). Study 2 was a randomized trial of active (2.0 mA, n = 15) or sham ( n = 12) delivered for 20 sessions. Fatigue was assessed using the Patient-Reported Outcomes Measurement Information System (PROMIS)-Fatigue Short Form. RESULTS AND CONCLUSION: In Study 1, there was modest fatigue reduction in the active group (-2.5 ± 7.4 vs -0.2 ± 5.3, p = 0.30, Cohen's d = -0.35). However, in Study 2 there was statistically significant reduction for the active group (-5.6 ± 8.9 vs 0.9 ± 1.9, p = 0.02, Cohen's d = -0.71). tDCS is a potential treatment for MS-related fatigue.
Asunto(s)
Fatiga/terapia , Memoria a Corto Plazo/fisiología , Esclerosis Múltiple/terapia , Corteza Prefrontal/cirugía , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/terapia , Fatiga/complicaciones , Estudios de Factibilidad , Femenino , Humanos , Masculino , Esclerosis Múltiple/complicaciones , Estimulación Transcraneal de Corriente Directa/métodos , Resultado del TratamientoRESUMEN
BACKGROUND: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has been shown to improve common symptoms of neurological disorders like depressed mood, fatigue, motor deficits and cognitive dysfunction. tDCS requires daily treatment sessions in order to be effective. We developed a remotely supervised tDCS (RS-tDCS) protocol for participants with multiple sclerosis (MS) to increase accessibility of tDCS, reducing clinician, patient, and caregiver burden. The goal of this protocol is to facilitate home use for larger trials with extended treatment periods. In this study we determine the generalizability of RS-tDCS paired with cognitive training (CT) by testing its feasibility in participants with Parkinson's disease (PD). METHODS: Following the methods in our MS protocol development, we enrolled sixteen participants (n = 12 male, n = 4 female; mean age 66 years) with PD to complete ten open-label sessions of RS-tDCS paired with CT (2.0 mA × 20 min) at home under the remote supervision of a trained study technician. Tolerability data were collected before, during, and after each individual session. Baseline and follow-up measures included symptom inventories (fatigue and sleep) and cognitive assessments. RESULTS: RS-tDCS was feasible and tolerable for patients with PD, with at-home access leading to high protocol compliance. Side effects were mostly limited to mild sensations of transient itching and burning under the electrode sites. Similar to prior finding sin MS, we found preliminary efficacy for improvement of fatigue and cognitive processing speed in PD. CONCLUSIONS: RS-tDCS paired with CT is feasible for participants with PD to receive at home treatment. Signals of benefit for reduced fatigue and improved cognitive processing speed are consistent across the PD and MS samples. RS-tDCS can be generalized to provide tDCS to a range of patients with neurologic disorders for at-home rehabilitation. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02746705 . Registered April 21st 2016.
Asunto(s)
Enfermedad de Parkinson/rehabilitación , Telerrehabilitación/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Anciano , Estudios de Factibilidad , Femenino , Humanos , MasculinoRESUMEN
OBJECTIVE: To explore the efficacy of remotely-supervised transcranial direct current stimulation (RS-tDCS) paired with cognitive training (CT) exercise in participants with multiple sclerosis (MS). METHODS: In a feasibility study of RS-tDCS in MS, participants completed ten sessions of tDCS paired with CT (1.5 mA × 20 min, dorsolateral prefrontal cortex montage). RS-tDCS participants were compared to a control group of adults with MS who underwent ten 20-min CT sessions through the same remotely supervised procedures. Cognitive outcomes were tested by composite scores measuring change in performance on standard tests (Brief International Cognitive Assessment in MS or BICAMS), basic attention (ANT-I Orienting and Attention Networks, Cogstate Detection), complex attention (ANT-I Executive Network, Cogstate Identification and One-Back), and intra-individual response variability (ANT-I and Cogstate identification; sensitive markers of disease status). RESULTS: After ten sessions, the tDCS group (n = 25) compared to the CT only group (n = 20) had significantly greater improvement in complex attention (p = 0.01) and response variability (p = 0.01) composites. The groups did not differ in measures of basic attention (p = 0.95) or standard cognitive measures (p = 0.99). CONCLUSIONS: These initial findings indicate benefit for RS-tDCS paired with CT in MS. Exploratory analyses indicate that the earliest tDCS cognitive benefit is seen in complex attention and response variability. Telerehabilitation using RS-tDCS combined with CT may lead to improved outcomes in MS.
Asunto(s)
Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/rehabilitación , Esclerosis Múltiple/complicaciones , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Anciano , Atención , Trastornos del Conocimiento/diagnóstico por imagen , Femenino , Humanos , Masculino , Memoria a Corto Plazo/fisiología , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Pruebas Neuropsicológicas , Estudios Retrospectivos , Tomógrafos Computarizados por Rayos XRESUMEN
Interleukin-2 (IL-2) is a critical regulator of immune homeostasis through its non-redundant role in regulatory T (Treg) cell biology. There is major interest in therapeutic modulation of the IL-2 pathway to promote immune activation in the context of tumour immunotherapy or to enhance immune suppression in the context of transplantation, autoimmunity and inflammatory diseases. Antibody-mediated targeting of the high-affinity IL-2 receptor α chain (IL-2Rα or CD25) offers a direct mechanism to target IL-2 biology and is being actively explored in the clinic. In mouse models, the rat anti-mouse CD25 clone PC61 has been used extensively to investigate the biology of IL-2 and Treg cells; however, there has been controversy and conflicting data on the exact in vivo mechanistic function of PC61. Engineering antibodies to alter Fc/Fc receptor interactions can significantly alter their in vivo function. In this study, we re-engineered the heavy chain constant region of an anti-CD25 monoclonal antibody to generate variants with highly divergent Fc effector function. Using these anti-CD25 Fc variants in multiple mouse models, we investigated the in vivo impact of CD25 blockade versus depletion of CD25(+) Treg cells on immune homeostasis. We report that immune homeostasis can be maintained during CD25 blockade but aberrant T-cell activation prevails when CD25(+) Treg cells are actively depleted. These results clarify the impact of PC61 on Treg cell biology and reveal an important distinction between CD25 blockade and depletion of CD25(+) Treg cells. These findings should inform therapeutic manipulation of the IL-2 pathway by targeting the high-affinity IL-2R.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Inmunoglobulina G/farmacología , Inmunoterapia , Interleucina-2/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Antivirales/inmunología , Autoinmunidad/inmunología , Factores de Transcripción Forkhead/metabolismo , Homeostasis/efectos de los fármacos , Inmunoglobulina G/genética , Terapia de Inmunosupresión , Interleucina-2/inmunología , Depleción Linfocítica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ingeniería de Proteínas , Ratas , Receptores de IgG/genética , Proteínas Recombinantes de Fusión/genética , Linfocitos T Reguladores/inmunologíaRESUMEN
OBJECTIVES: Transcranial direct current stimulation (tDCS) has potential clinical application for symptomatic management in multiple sclerosis (MS). Repeated sessions are necessary in order to adequately evaluate a therapeutic effect. However, it is not feasible for many individuals with MS to visit clinic for treatment on a daily basis, and clinic delivery is also associated with substantial cost. We developed a research protocol to remotely supervise self- or proxy-administration for home delivery of tDCS using specially designed equipment and a telemedicine platform. MATERIALS AND METHODS: We targeted ten treatment sessions across two weeks. Twenty participants (n = 20) diagnosed with MS (any subtype), ages 30 to 69 years with a range of disability (Expanded Disability Status Scale or EDSS scores of 1.0 to 8.0) were enrolled to test the feasibility of the remotely supervised protocol. RESULTS: Protocol adherence exceeded what has been observed in studies with clinic-based treatment delivery, with all but one participant (95%) completing at least eight of the ten sessions. Across a total of 192 supervised treatment sessions, no session required discontinuation and no adverse events were reported. The most common side effects were itching/tingling at the electrode site. CONCLUSIONS: This remotely supervised tDCS protocol provides a method for safe and reliable delivery of tDCS for clinical studies in MS and expands patient access to tDCS.
Asunto(s)
Esclerosis Múltiple/terapia , Telemedicina/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Resultado del Tratamiento , Adulto , Anciano , Evaluación de la Discapacidad , Estudios de Factibilidad , Femenino , Estudios de Seguimiento , Servicios de Atención de Salud a Domicilio , Humanos , Masculino , Persona de Mediana EdadRESUMEN
BACKGROUND: The terms "anodal" and "cathodal" are widely used to describe transcranial direct current stimulation (tDCS) of opposing polarities, often interpreted as excitatory and inhibitory, respectively. However, high-definition tDCS allows for complex electrode configurations that may not be characterized accurately as "anodal" and "cathodal." METHOD: To illustrate challenges to data interpretation that may result from unclarity about the neuromodulatory effects of different field orientations, we present two high-definition tDCS experiments in the language domain, with different electrode configurations. We also present the modeled electric fields for a traditional tDCS setup, showing how brain stimulation may far exceed target regions. CONCLUSIONS: More research is warranted on the hypothesized inhibitory or excitatory effects of different electrode configurations. Moreover, conventional bicephalic 1 × 1 configurations using sponges or HD electrodes may not be accurately described by the terms "anodal" and "cathodal" either, as these terms only pertain to the desired effects over an area of interest, but not any other areas affected. Therefore, design and interpretation of (HD-)tDCS and conventional tDCS research studies should not be constrained by the anodal/cathodal dichotomy.
Asunto(s)
Mapeo Encefálico , Corteza Cerebral/fisiología , Potenciales Evocados Motores/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Área de Broca/fisiología , Electrodos , Electroencefalografía , Lateralidad Funcional , Humanos , Modelos Neurológicos , Estimulación Transcraneal de Corriente Directa/clasificaciónRESUMEN
Transcranial direct current stimulation (tDCS) studies often use one anode to increase cortical excitability in one hemisphere. However, mental processes may involve cortical regions in both hemispheres. This study's aim was to assess the safety and possible effects on affect and working memory of tDCS using two anodes for bifrontal stimulation. A group of healthy subjects participated in two bifrontal tDCS sessions on two different days, one for real and the other for sham stimulation. They performed a working memory task and reported their affect immediately before and after each tDCS session. Relative to sham, real bifrontal stimulation did not induce significant adverse effects, reduced decrement in vigor-activity during the study session, and did not improve working memory. These preliminary findings suggest that bifrontal anodal stimulation is feasible and safe and may reduce task-related fatigue in healthy participants. Its effects on neuropsychiatric patients deserve further study.