Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 49(9): 3215-3225, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35278108

RESUMEN

PURPOSE: Kinetic parameters from dynamic 18F-fluorodeoxyglucose (FDG) imaging offer complementary insights to the study of disease compared to static clinical imaging. However, dynamic imaging protocols are cumbersome due to the long acquisition time. Long axial field-of-view (LAFOV) PET scanners (> 70 cm) have two advantages for dynamic imaging over clinical PET scanners with a standard axial field-of-view (SAFOV; 16-30 cm). The large axial coverage enables multi-organ dynamic imaging in a single bed position, and the high sensitivity may enable clinically routine abbreviated dynamic imaging protocols. METHODS: In this work, we studied two abbreviated protocols using data from a 65-min dynamic 18F-FDG scan: (A) dynamic imaging immediately post-injection (p.i.) for variable durations, and (B) dynamic imaging immediately p.i. for variable durations plus a 1-h p.i. (5-min-long) datapoint. Nine cancer patients were imaged on the Biograph Vision Quadra (Siemens Healthineers). Time-activity curves over the lesions (N = 39) were fitted using the Patlak graphical analysis and a 2-tissue-compartment (2C, k4 = 0) model for variable scan durations (5-60 min). Kinetic parameters from the complete dataset served as the reference. Lesions from all cancers were grouped into low, medium, and high flux groups, and bias and precision of Ki (Patlak) and Ki, K1, k2, and k3 (2C) were calculated for each group. RESULTS: Using only early dynamic data with the 2C (or Patlak) model, accurate quantification of Ki required at least 50 (or 55) min of dynamic data for low flux lesions, at least 30 (or 40) min for medium flux lesions, and at least 15 (or 20) min for high flux lesions to achieve both 10% bias and precision. The addition of the final (5-min) datapoint allowed for accurate quantification of Ki with a bias and precision of 10% using only 10-15 min of early dynamic data for either model. CONCLUSION: Dynamic imaging for 10-15 min immediately p.i. followed by a 5-min scan at 1-h p.i can accurately and precisely quantify 18F-FDG on a long axial FOV scanner, potentially allowing for more widespread use of dynamic 18F-FDG imaging.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias , Humanos , Cinética , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Cintigrafía
2.
Phys Med Biol ; 68(9)2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36958051

RESUMEN

Objective.This work evaluated the updated PennPET Explorer total-body (TB) PET scanner, which was extended to 6 rings with updated readout firmware to achieve a 142 cm axial field of view (AFOV) without 7.6 cm inter-ring axial gaps.Approach.National Electrical Manufacturers Association (NEMA) NU 2-2018 measurements were performed with modifications including longer phantoms for sensitivity and count-rate measurements and additional positions for spatial resolution and image quality. A long uniform phantom and the clinical trials network (CTN) phantom were also used.Main results.The total sensitivity increased to 140 kcps MBq-1for a 70 cm line, a gain of 1.8x compared to the same system with axial gaps; an additional 47% increase in total counts was observed with a 142 cm line at the same activity per cm. The noise equivalent count rate (NECR) increased by 1.8x without axial gaps. The peak NECR is 1550 kcps at 25 kBq cc-1for a 140 cm phantom; due to increased randoms, the NECR is lower than with a 70 cm phantom, for which NECR is 2156 kcps cc-1at 25 kBq cc-1and continues increasing. The time-of-flight resolution is 250 ps, increasing by <10 ps at the highest activity. The axial spatial resolution degrades by 0.6 mm near the center of the AFOV, compared to 4 mm resolution near the end. The NEMA image quality phantom showed consistent contrast recovery throughout the AFOV. A long uniform phantom demonstrated axial uniformity of uptake and noise, and the CTN phantom demonstrated quantitative accuracy for both18F and89Zr.Significance. The performance evaluation of the updated PennPET Explorer demonstrates significant gains compared to conventional scanners and shows where the current NEMA standard needs to be updated for TB-PET systems. The comparisons of systems with and without inter-ring gaps demonstrate the performance trade-offs of a more cost-effective TB-PET system with incomplete detector coverage.


Asunto(s)
Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Tomografía de Emisión de Positrones/métodos , Fantasmas de Imagen
3.
Br J Radiol ; 95(1140): 20220357, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993615

RESUMEN

Total body (TB) positron emission tomography (PET) instruments have dramatically changed the paradigm of PET clinical and research studies due to their very high sensitivity and capability to image dynamic radiopharmaceutical distributions in the major organs of the body simultaneously. In this manuscript, we review the design of these systems and discuss general challenges and trade-offs to maximize the performance gains of current TB-PET systems. We then describe new concepts and technology that may impact future TB-PET systems. The manuscript summarizes what has been learned from the initial sites with TB-PET and explores potential research and clinical applications of TB-PET. The current generation of TB-PET systems range in axial field-of-view (AFOV) from 1 to 2 m and serve to illustrate the benefits and opportunities of a longer AFOV for various applications in PET. In only a few years of use these new TB-PET systems have shown that they will play an important role in expanding the field of molecular imaging and benefiting clinical practice.


Asunto(s)
Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Humanos , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Imagen Molecular
4.
Mol Imaging Biol ; 24(5): 710-720, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35349040

RESUMEN

PURPOSE: Prostate-specific membrane antigen (PSMA) is a promising molecular target for imaging of prostate adenocarcinoma. 68Ga-P16-093, a small molecule PSMA ligand, previously showed equivalent diagnostic performance compared to 68Ga-PSMA-11 PET/CT in a pilot study of prostate cancer patients with biochemical recurrence (BCR). We performed a pilot study for further characterization of 68Ga-P16-093 including comparison to conventional imaging. PROCEDURES: Patients were enrolled into two cohorts. The biodistribution cohort included 8 treated prostate cancer patients without recurrence, who underwent 6 whole body PET/CT scans with urine sampling for dosimetry using OLINDA/EXM. The dynamic cohort included 15 patients with BCR and 2 patients with primary prostate cancer. Two patients with renal cell carcinoma were also enrolled for exploratory use. A dynamic PET/CT was followed by 2 whole body scans for imaging protocol optimization based on bootstrapped replicates. 68Ga-P16-093 PET/CT was compared for diagnostic performance against available 18F-fluciclovine PET/CT, 99mTc-MDP scintigraphy, diagnostic CT, and MRI. RESULTS: 68Ga-P16-093 deposited similar effective dose (0.024 mSv/MBq) and lower urinary bladder dose (0.064 mSv/MBq) compared to 68Ga-PSMA-11. The kidneys were the critical organ (0.290 mSv/MBq). While higher injected activities were preferable, lower injected activities at 74-111 MBq (2-3 mCi) yielded 80% retention in signal-to-noise ratio. The optimal injection-to-scan interval was 60 min, with acceptable delay up to 90 min. 68Ga-P16-093 PET/CT showed superior diagnostic performance over conventional imaging with overall patient-level lesion detection rate of 71%, leading to a change in management in 42% of the patients. CONCLUSIONS: Based on its favorable imaging characteristics and diagnostic performance in prostate cancer, 68Ga-P16-093 PET/CT merits further investigation in larger clinical studies.


Asunto(s)
Radioisótopos de Galio , Neoplasias de la Próstata , Masculino , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Próstata/patología , Distribución Tisular , Ligandos , Proyectos Piloto , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Antígeno Prostático Específico , Ácido Edético
5.
PET Clin ; 16(1): 25-39, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33160929

RESUMEN

This article describes aspects of PET scanner design for long axial field-of-view systems and how these choices have an impact on scanner performance.


Asunto(s)
Diseño de Equipo , Tomografía de Emisión de Positrones/instrumentación , Humanos , Sensibilidad y Especificidad
6.
IEEE Trans Radiat Plasma Med Sci ; 5(3): 322-330, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34179595

RESUMEN

The introduction of long (>60 cm) axial field-of-view (LAFOV) PET systems has shown their potential for clinical and research applications. LAFOV scanners are expensive, so there is interest in designing systems with longer axial coverage while mitigating cost by introducing detector gaps. We used measurements on the PennPET Explorer (64-cm AFOV prototype) and simulations of scanners up to 143-cm long to assess scanner performance with axial gaps introduced by varying the number of detector rows in each ring. Removing detectors reduces the total sensitivity and results in a non-uniform axial noise profile. Axial resolution shows small (<0.5 mm) loss from the edge of the AFOV to the center, even for a 143-cm AFOV scanner with an unrestricted acceptance angle. The presence of large axial gaps increases the variability in axial resolution and contrast recovery across the AFOV compared to a system without gaps. More modest axial gaps show less variable behavior. The results suggest that designs where the gap is no larger than one-half of the width of a detector ring may be preferred, although the optimal choice of scanner design with the trade-offs of performance and AFOV will depend on its intended usage.

7.
J Nucl Med ; 61(11): 1684-1690, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32198313

RESUMEN

The latest digital whole-body PET scanners provide a combination of higher sensitivity and improved spatial and timing resolution. We performed a lesion detectability study on two generations of Biograph PET/CT scanners, the mCT Flow and the Vision, to study the impact of improved physical performance on clinical performance. Our hypothesis was that the improved performance of the Vision would result in improved lesion detectability, allowing shorter imaging times or, equivalently, a lower injected dose. Methods: Data were acquired with the Society of Nuclear Medicine and Molecular Imaging Clinical Trials Network torso phantom combined with a 20-cm-diameter cylindrical phantom. Spherical lesions were emulated by acquiring sphere-in-air data and combining them with the phantom data to generate combined datasets with embedded lesions of known contrast. Two sphere sizes and uptakes were used: 9.89-mm-diameter spheres with 6:1 (lung) and 3:1 (cylinder) local activity concentration uptakes and 4.95-mm-diameter spheres with 9.6:1 (lung) and 4.5:1 (cylinder) local activity concentration uptakes. Standard image reconstruction was performed: an ordinary Poisson ordered-subsets expectation maximization algorithm with point-spread function and time-of-flight modeling and postreconstruction smoothing with a 5-mm gaussian filter. The Vision images were also generated without any postreconstruction smoothing. Generalized scan statistics methodology was used to estimate the area under the localized receiver-operating-characteristic curve (ALROC). Results: The higher sensitivity and improved time-of-flight performance of the Vision leads to reduced contrast in the background noise nodule distribution. Measured lesion contrast is also higher on the Vision because of its improved spatial resolution. Hence, the ALROC is noticeably higher for the Vision than for the mCT Flow. Conclusion: Improved overall performance of the Vision provides a factor of 4-6 reduction in imaging time (or injected dose) over the mCT Flow when using the ALROC metric for lesions at least 9.89 mm in diameter. Smaller lesions are barely detected in the mCT Flow, leading to even higher ALROC gains with the Vision. The improved spatial resolution of the Vision also leads to a higher measured contrast that is closer to the real uptake, implying improved quantification. Postreconstruction smoothing, however, reduces this improvement in measured contrast, thereby reducing the ALROC for small, high-uptake lesions.


Asunto(s)
Neoplasias/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Neoplasias/patología , Curva ROC
8.
IEEE Trans Radiat Plasma Med Sci ; 4(6): 735-749, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33225120

RESUMEN

Long axial field-of-view (AFOV) PET scanners allow for full-body dynamic imaging in a single bed-position at very high sensitivity. However, the benefits for kinetic parameter estimation have yet to be studied. This work uses (1) a dynamic GATE simulation of [18F]-fluorothymidine (FLT) in a modified NEMA IQ phantom and (2) a lesion embedding study of spheres in a dynamic [18F]-fluorodeoxyglucose (FDG) human subject imaged on the PennPET Explorer. Both studies were designed using published kinetic data of lung and liver cancers and modeled using two tissue compartments. Data were reconstructed at various emulated doses. Sphere time-activity curves (TACs) were measured on resulting dynamic images, and TACs were fit using a two-tissue-compartment model (k4 ≠ 0) for the FLT study and both a two-tissue-compartment model (k4 = 0) and Patlak graphical analysis for the FDG study to estimate flux (Ki) and delivery (K1) parameters. Quantification of flux and K1 shows lower bias and better precision for both radiotracers on the long AFOV scanner, especially at low doses. Dynamic imaging on a long AFOV system can be achieved for a greater range of injected doses, as low as 0.5-2 mCi depending on the sphere size and flux, compared to a standard AFOV scanner, while maintaining good kinetic parameter estimation.

9.
J Nucl Med ; 61(1): 144-151, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31562224

RESUMEN

The PennPET Explorer, a prototype whole-body imager currently operating with a 64-cm axial field of view, can image the major body organs simultaneously with higher sensitivity than that of commercial devices. We report here the initial human imaging studies on the PennPET Explorer, with each study designed to test specific capabilities of the device. Methods: Healthy subjects were imaged with FDG on the PennPET Explorer. Subsequently, clinical subjects with disease were imaged with 18F-FDG and 68Ga-DOTATATE, and research subjects were imaged with experimental radiotracers. Results: We demonstrated the ability to scan for a shorter duration or, alternatively, with less activity, without a compromise in image quality. Delayed images, up to 10 half-lives with 18F-FDG, revealed biologic insight and supported the ability to track biologic processes over time. In a clinical subject, the PennPET Explorer better delineated the extent of 18F-FDG-avid disease. In a second clinical study with 68Ga-DOTATATE, we demonstrated comparable diagnostic image quality between the PennPET scan and the clinical scan, but with one fifth the activity. Dynamic imaging studies captured relatively noise-free input functions for kinetic modeling approaches. Additional studies with experimental research radiotracers illustrated the benefits from the combination of large axial coverage and high sensitivity. Conclusion: These studies provided a proof of concept for many proposed applications for a PET scanner with a long axial field of view.


Asunto(s)
Tomografía de Emisión de Positrones/métodos , Imagen de Cuerpo Entero/métodos , Adulto , Anciano , Femenino , Fluorodesoxiglucosa F18/química , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Cinética , Masculino , Persona de Mediana Edad , Compuestos Organometálicos/química , Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Imagen de Cuerpo Entero/instrumentación
10.
J Nucl Med ; 61(1): 136-143, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31227573

RESUMEN

We report on the development of the PennPET Explorer whole-body imager. Methods: The PennPET Explorer is a multiring system designed with a long axial field of view. The imager is scalable and comprises multiple 22.9-cm-long ring segments, each with 18 detector modules based on a commercial digital silicon photomultiplier. A prototype 3-segment imager has been completed and tested with an active 64-cm axial field of view. Results: The instrument design is described, and its physical performance measurements are presented. These include sensitivity of 55 kcps/MBq, spatial resolution of 4.0 mm, energy resolution of 12%, timing resolution of 256 ps, and a noise-equivalent count rate above 1,000 kcps beyond 30 kBq/mL. After an evaluation of lesion torso phantoms to characterize quantitative accuracy, human studies were performed on healthy volunteers. Conclusion: The physical performance measurements validated the system design and led to high-quality human studies.


Asunto(s)
Tomografía de Emisión de Positrones/instrumentación , Tomografía de Emisión de Positrones/métodos , Imagen de Cuerpo Entero/instrumentación , Imagen de Cuerpo Entero/métodos , Adulto , Calibración , Diseño de Equipo , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Cinética , Persona de Mediana Edad , Fantasmas de Imagen , Silicio
11.
Phys Med Biol ; 65(3): 035002, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31816616

RESUMEN

This work uses lesion detectability to characterize the performance of long axial field of view (AFOV) PET scanners which have increased sensitivity compared to clinical scanners. Studies were performed using the PennPET Explorer, a 70 cm long AFOV scanner built at the University of Pennsylvania, for small lesions distributed in a uniform water-filled cylinder (simulations and measurements), an anthropomorphic torso phantom (measurement), and a human subject (measurement). The lesion localization and detection task was quantified numerically using a generalized scan statistics methodology. Detectability was studied as a function of background activity distribution, scan duration for a single bed position, and axial location of the lesions. For the cylindrical phantom, the areas under the localization receiver operating curve (ALROCs) of lesions placed at various axial locations in the scanner were greater than 0.8-a value considered to be clinically acceptable (i.e. 80% probability of detecting lesion)-for scan times of 60 s or longer for standard-of-care (SoC) clinical dose levels. 10 mm diameter lesions placed in the anthropomorphic phantom and human subject resulted in ALROCs of 0.8 or greater for scan times longer than 30 s in the lung region and 60 s in the liver region, also for SoC doses. ALROC results from all three activity distributions show similar trends as a function of counts detected per axial location. These results will be used to guide decisions on imaging parameters, such as scan time and patient dose, when imaging patients in a single bed position on long AFOV systems and can also be applied to clinical scanners with consideration of the sensitivity differences.


Asunto(s)
Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Tomografía de Emisión de Positrones/métodos , Imagen de Cuerpo Entero/instrumentación , Imagen de Cuerpo Entero/métodos , Anciano , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino
12.
Nucl Med Biol ; 86-87: 1-8, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32361089

RESUMEN

INTRODUCTION: [68Ga]Ga-P15-041 ([68Ga]Ga-HBED-CC-BP) is a novel bone-seeking PET radiotracer that can be generator-produced. We undertook a Phase 0/I clinical trial to assess its potential for imaging bone metastases in prostate cancer including assessment of radiotracer biodistribution and dosimetry. METHODS: Subjects with prostate cancer and known or suspected osseous metastatic disease were enrolled into one of two arms: dosimetry or dynamic. Dosimetry was performed with 6 whole body PET acquisitions and urine collection spanning 3 h; normal organ dosimetry was calculated using OLINDA/EXM. Dynamic imaging included a 60 min acquisition over a site of known or suspected disease followed by two whole body scans. Bootstrapping and subsampling of the acquired list-mode data were conducted to recommend image acquisition parameters for future clinical trials. RESULTS: Up to 233 MBq (6.3 mCi) of [68Ga]Ga-P15-041 was injected into 12 enrolled volunteers, 8 in dosimetry and 4 in dynamic cohorts. Radiotracer accumulated in known bone lesions and cleared rapidly from blood and soft tissue. The highest individual organ dose was 0.135 mSv/MBq in the urinary bladder wall. The average effective dose was 0.0173 ± 0.0036 mSv/MBq. An average injected activity of 166.5 MBq (4.5 mCi) resulted in absorbed dose estimates of 22.5 mSv to the urinary bladder wall, 8.2 mSv to the kidneys, and an effective dose of 2.9 mSv. Lesion signal to noise ratios on images generated from subsampled data were significantly higher for injected activities above 74 MBq (2 mCi) and were also significantly higher for imaging at 90 min than at 180 min post-injection. CONCLUSIONS: Dosimetry estimates are acceptable and [68Ga]Ga-P15-041 uptake characteristics in patients with confirmed bone metastases support its continued development. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: Use of [68Ga]Ga-P15-041 would not require cyclotron infrastructure for manufacturing and distribution, allowing for improved patient access to a promising PET bone imaging agent.


Asunto(s)
Ácido Edético/análogos & derivados , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Relación Señal-Ruido , Adulto , Anciano , Transporte Biológico , Ácido Edético/efectos adversos , Ácido Edético/metabolismo , Ácido Edético/farmacocinética , Humanos , Marcaje Isotópico , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiometría , Seguridad , Distribución Tisular
13.
J Nucl Med ; 49(3): 462-70, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18287269

RESUMEN

UNLABELLED: Significant improvements have made it possible to add the technology of time-of-flight (TOF) to improve PET, particularly for oncology applications. The goals of this work were to investigate the benefits of TOF in experimental phantoms and to determine how these benefits translate into improved performance for patient imaging. METHODS: In this study we used a fully 3-dimensional scanner with the scintillator lutetium-yttrium oxyorthosilicate and a system timing resolution of approximately 600 ps. The data are acquired in list-mode and reconstructed with a maximum-likelihood expectation maximization algorithm; the system model includes the TOF kernel and corrections for attenuation, detector normalization, randoms, and scatter. The scatter correction is an extension of the model-based single-scatter simulation to include the time domain. Phantom measurements to study the benefit of TOF include 27-cm- and 35-cm-diameter distributions with spheres ranging in size from 10 to 37 mm. To assess the benefit of TOF PET for clinical imaging, patient studies are quantitatively analyzed. RESULTS: The lesion phantom studies demonstrate the improved contrast of the smallest spheres with TOF compared with non-TOF and also confirm the faster convergence of contrast with TOF. These gains are evident from visual inspection of the images as well as a quantitative evaluation of contrast recovery of the spheres and noise in the background. The gains with TOF are higher for larger objects. These results correlate with patient studies in which lesions are seen more clearly and with higher uptake at comparable noise for TOF than with non-TOF. CONCLUSION: TOF leads to a better contrast-versus-noise trade-off than non-TOF but one that is difficult to quantify in terms of a simple sensitivity gain improvement: A single gain factor for TOF improvement does not include the increased rate of convergence with TOF nor does it consider that TOF may converge to a different contrast than non-TOF. The experimental phantom results agree with those of prior simulations and help explain the improved image quality with TOF for patient oncology studies.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Humanos , Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Acad Radiol ; 14(3): 330-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17307666

RESUMEN

The proceedings of a workshop focusing on a project to evaluate the use of fluorodeoxyglucose-positron emission tomography (FDG-PET) as a tool to measure treatment response in non-Hodgkin lymphoma (NHL) are described. Sponsored by the Leukemia & Lymphoma Society, the Foundation of the National Institutes of Health, and the National Cancer Institute, and attended by representatives of the Food and Drug Administration, the Centers for Medicare and Medicaid Services, and scientists and clinical researchers from academia and the pharmaceutical and medical imaging industries, the workshop reviewed the etiology and current standards of care for NHL and proposed the development of a clinical trial to validate FDG-PET imaging techniques as a predictive biomarker for cancer therapy response. As organized under the auspices of the Oncology Biomarker Qualification Initiative, the three federal health agencies and their private sector and nonprofit/advocacy group partners believe that FDG-PET not only demonstrates the potential to be used for the diagnosis and staging of many cancers but in particular can provide an early indication of therapeutic response that is well correlated with clinical outcomes for chemotherapy for this common form of lymphoma. The development of standardized criteria for FDG-PET imaging and establishment of procedures for transmission, storage, quality assurance, and analysis of PET images afforded by this demonstration project could streamline clinical trials of new treatments for more intractable forms of lymphoma and other cancers and, hence, accelerate new drug approvals.


Asunto(s)
Fluorodesoxiglucosa F18 , Linfoma no Hodgkin/diagnóstico por imagen , Tomografía de Emisión de Positrones , Ensayos Clínicos Fase II como Asunto , Femenino , Humanos , Linfoma no Hodgkin/tratamiento farmacológico , Masculino , Garantía de la Calidad de Atención de Salud , Reproducibilidad de los Resultados
15.
Med Phys ; 44(7): 3534-3544, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28464372

RESUMEN

PURPOSE: To improve the precision of multicenter clinical trials, several efforts are underway to determine scanner-specific parameters for harmonization using standardized phantom measurements. The goal of this study was to test the correspondence between quantification in phantom and patient images and validate the use of phantoms for harmonization of patient images. METHODS: The National Electrical Manufacturers' Association image quality phantom with hot spheres was scanned on two time-of-flight PET scanners. Whole-body [18 F]-fluorodeoxyglucose (FDG)-PET scans were acquired of subjects on the same systems. List-mode events from spheres (diam.: 10-28 mm) measured in air on each scanner were embedded into the phantom and subject list-mode data from each scanner to create lesions with known uptake with respect to the local background in the phantom and each subject's liver and lung regions, as a proxy to characterize true lesion quantification. Images were analyzed using the contrast recovery coefficient (CRC) typically used in phantom studies and serving as a surrogate for the standardized uptake value used clinically. Postreconstruction filtering (resolution recovery and Gaussian smoothing) was applied to determine if the effect on the phantom images translates equivalently to subject images. Three postfiltering strategies were selected to harmonize the CRCmean or CRCmax values between the two scanners based on the phantom measurements and then applied to the subject images. RESULTS: Both the average CRCmean and CRCmax values for lesions embedded in the lung and liver in four subjects (BMI range 25-38) agreed to within 5% with the CRC values for lesions embedded in the phantom for all lesion sizes. In addition, the relative changes in CRCmean and CRCmax resulting from the application of the postfilters on the subject and phantom images were consistent within measurement uncertainty. Further, the root mean squared percent difference (RMSpd ) between CRC values on the two scanners calculated over the three sphere sizes was significantly reduced in the subjects using postfiltering strategies chosen to harmonize CRCmean or CRCmax based on phantom measurements: RMSpd of the CRCmean values in subjects was reduced from 36% to < 8% after harmonizing CRCmean , while RMSpd for CRCmax was reduced from ~33% to < 6% after harmonizing CRCmax with a different strategy. However, with this strategy designed to harmonize CRCmax , the RMSpd for CRCmean only improved to ~14% in subjects. CONCLUSIONS: The consistency of the CRC measurements between the phantom and subject data demonstrates that harmonization strategies defined with phantom studies track well to patient images. However, quantitative agreement between different scanners as represented by the RMSpd depends on the metric chosen for harmonization.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Fantasmas de Imagen , Tomografía Computarizada por Rayos X , Humanos , Pulmón , Tomografía de Emisión de Positrones
16.
IEEE Trans Med Imaging ; 25(5): 529-38, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16689258

RESUMEN

The purpose of this paper is to determine the benefit that can be achieved in image quality for a time-of-flight (TOF) fully three-dimensional (3-D) whole-body positron emission tomography (PET) scanner. We simulate a 3-D whole-body time-of-flight PET scanner with a complete modeling of spatial and energy resolutions. The scanner is based on LaBr3 Anger-logic detectors with which 300ps timing resolution has been achieved. Multiple simulations were performed for 70-cm long uniform cylinders with 27-cm and 35-cm diameters, containing hot spheres (22, 17, 13, and 10-mm diameter) in a central slice and 10-mm diameter hot spheres in a slice at 1/4 axial FOV. Image reconstruction was performed with a list-mode iterative TOF algorithm and data were analyzed after attenuation and scatter corrections for timing resolutions of 300, 600, 1000 ps and non-TOF for varying count levels. The results show that contrast recovery improves slightly with TOF (NEMA NU2-2001 analysis), and improved timing resolution leads to a faster convergence to the maximum contrast value. Detectability for 10-mm diameter hot spheres estimated using a nonprewhitening matched filter (NPW SNR) also improves nonlinearly with TOF. The gain in image quality using contrast and noise measures is proportional to the object diameter and inversely proportional to the timing resolution of the scanner. The gains in NPW SNR are smaller, but they also increase with increasing object diameter and improved timing resolution. The results show that scan times can be reduced in a TOF scanner to achieve images similar to those from a non-TOF scanner, or improved image quality achieved for same scan times.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Tomografía de Emisión de Positrones/métodos , Imagen de Cuerpo Entero/métodos , Simulación por Computador , Almacenamiento y Recuperación de la Información/métodos , Modelos Biológicos , Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Phys Med Biol ; 51(6): 1603-21, 2006 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-16510966

RESUMEN

Faster scintillators like LaBr(3) and LSO have sparked renewed interest in PET scanners with time-of-flight (TOF) information. The TOF information adds another dimension to the data set compared to conventional three-dimensional (3D) PET with the size of the projection data being multiplied by the number of TOF bins. Here we show by simulations and analytical reconstruction that angular sampling for two-dimensional (2D) TOF PET can be reduced significantly compared to what is required for conventional 2D PET. Fully 3D TOF PET data, however, have a wide range of oblique and transverse angles. To make use of the smaller necessary angular sampling we reduce the 3D data to a set of 2D histoprojections. This is done by rebinning the 3D data to 2D data and by mashing these 2D data into a limited number of angles. Both methods are based on the most likely point given by the TOF measurement. It is shown that the axial resolution loss associated with rebinning reduces with improved timing resolution and becomes less than 1 mm for a TOF resolution below 300 ps. The amount of angular mashing that can be applied without tangential resolution loss increases with improved TOF resolution. Even quite coarse angular mashing (18 angles out of 324 measured angles for 424 ps) does not significantly reduce image quality in terms of the contrast or noise. The advantages of the proposed methods are threefold. Data storage is reduced to a limited number of 2D histoprojections with TOF information. Compared to listmode format we have the advantage of a predetermined storage space and faster reconstruction. The method does not require the normalization of projections prior to rebinning and can be applied directly to measured listmode data.


Asunto(s)
Imagenología Tridimensional/métodos , Tomografía de Emisión de Positrones/métodos , Algoritmos , Simulación por Computador , Compresión de Datos , Análisis de Fourier , Humanos , Aumento de la Imagen , Interpretación de Imagen Asistida por Computador , Procesamiento de Imagen Asistido por Computador , Método de Montecarlo , Tiempo , Factores de Tiempo , Tomografía Computarizada de Emisión/métodos
18.
Phys Med Biol ; 61(9): 3365-86, 2016 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-27032968

RESUMEN

Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of time-of-flight (TOF) scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (DIRECT: direct image reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias versus variance performance to iterative TOF reconstruction with a matched resolution model.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Hepatopatías/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico por imagen , Modelos Teóricos , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Humanos
19.
IEEE Trans Med Imaging ; 24(7): 844-52, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16011313

RESUMEN

The evolution of positron emission tomography (PET) imaging for small animals has led to the development of dedicated PET scanner designs with high resolution and sensitivity. The animal PET scanner achieves these goals for imaging small animals such as mice and rats. The scanner uses a pixelated Anger-logic detector for discriminating 2 x 2 x 10 mm3 crystals with 19-mm-diameter photomultiplier tubes. With a 19.7-cm ring diameter, the scanner has an axial length of 11.9 cm and operates exclusively in three-dimensional imaging mode, leading to very high sensitivity. Measurements show that the scanner design achieves a spatial resolution of 1.9 mm at the center of the field-of-view. Initially designed with gadolinium orthosilicate but changed to lutetium- yttrium orthosilicate, the scanner now achieves a sensitivity of 3.6% for a point source at the center of the field-of-view with an energy window of 250-665 keV. Iterative image reconstruction, together with accurate data corrections for scatter, random, and attenuation, are incorporated to achieve high-quality images and quantitative data. These results are demonstrated through our contrast recovery measurements as well as sample animal studies.


Asunto(s)
Aumento de la Imagen/instrumentación , Interpretación de Imagen Asistida por Computador/instrumentación , Tomografía de Emisión de Positrones/instrumentación , Tomografía de Emisión de Positrones/veterinaria , Procesamiento de Señales Asistido por Computador/instrumentación , Animales , Gatos , Diseño de Equipo , Análisis de Falla de Equipo , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Ratones , Miniaturización/métodos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Biol Psychiatry ; 54(8): 818-25, 2003 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-14550681

RESUMEN

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) affects the excitability of the motor cortex and is thought to influence activity in other brain areas as well. We combined the administration of varying intensities of 1-Hz rTMS of the motor cortex with simultaneous positron emission tomography (PET) to delineate local and distant effects on brain activity. METHODS: Ten healthy subjects received 1-Hz rTMS to the optimal position over motor cortex (M1) for producing a twitch in the right hand at 80, 90, 100, 110, and 120% of the twitch threshold, while regional cerebral blood flow (rCBF) was measured using H(2)(15)O and PET. Repetitive transcranial magnetic stimulation (rTMS) was delivered in 75-pulse trains at each intensity every 10 min through a figure-eight coil. The regional relationship of stimulation intensity to normalized rCBF was assessed statistically. RESULTS: Intensity-dependent rCBF increases were produced under the M1 stimulation site in ipsilateral primary auditory cortex, contralateral cerebellum, and bilateral putamen, insula, and red nucleus. Intensity-dependent reductions in rCBF occurred in contralateral frontal and parietal cortices and bilateral anterior cingulate gyrus and occipital cortex. CONCLUSIONS: This study demonstrates that 1-Hz rTMS delivered to the primary motor cortex (M1) produces intensity-dependent increases in brain activity locally and has associated effects in distant sites with known connections to M1.


Asunto(s)
Corteza Motora/irrigación sanguínea , Tomografía Computarizada de Emisión , Estimulación Magnética Transcraneal/instrumentación , Adulto , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Umbral Diferencial , Femenino , Humanos , Masculino , Corteza Motora/diagnóstico por imagen , Cráneo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA