Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 882: 163554, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37088395

RESUMEN

Tungsten (W)-based shots are considered more environmentally safe than lead (Pb)-based shots, but knowledge about the W-shot fate in the soil environment is still limited, especially in terms of minor constituents such as iron, copper, and nickel (Ni). Contaminant behaviour in soil strongly depends on pH; in turn, the corrosion of metal composites may affect the pH locally. The aim of this study was to compare Pb- and W-shot weathering dynamics in soil (silt loam, pH 6.3) and reveal the interplay of shot weathering-induced pH-changes on the mobility of elements using in situ chemical imaging (Diffusive gradients in thin films for labile elements, planar optodes for soil pH) and batch incubation experiments over time (16 months). Despite our expectation to find acidification due to W oxidation, we observed a pH increase by 0.2 units in extracted soil solutions and by 0.6 units in the soil around W-shots as Ni dissolved from the binder phase of the shot. After 10 weeks, release of labile Ni was 3-times higher compared to W despite the low Ni content in the shot (7 %, m/m). Pb-shot oxidation increased soil solution pH by 0.5 units which likely supported mobility of Pb-shot-derived antimony (Sb). Steep gradients of labile W and Pb and soil solution concentrations <0.8 µmol L-1 indicated that transfer from shot to soil was low. Contrastingly, labile Ni and Sb were found up to ~4 mm from the shot surface and in higher soil solution concentrations as suggested by the shot constitution, indicating higher mobility of minor as compared to major shot constituents. After 16 months, 36 % of total Ni were dissolved in the soil solution highlighting the environmental relevance of minor shot constituents in Pb-shot alternatives after short term weathering in soil.

2.
Chemosphere ; 216: 463-471, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30384316

RESUMEN

Biochar (BC) is increasingly tested as a soil amendment for immobilization of heavy metals (HMs) and other pollutants. In our study, an acidic soil amended with wood chip-derived BC showed strongly enhanced Cu and Cd sorption after 15 months of aging under greenhouse conditions. X-ray absorption near edge structure suggested formation of Cu(OH)2 and CuCO3 and upon aging increasingly Cu sorption to the BC organic phase (from 9.2% to 40.7%) as main binding mechanisms of Cu on the BCs. In contrast, Cd was predominantly bound as CdCO3 on the BCs even after 15 months (82.7%). We found indications by mid-infrared spectroscopy that the formation of organic functional groups plays a role for increased HM sorption on aged BCs. Yet, our data suggest that the accessibility of BC's pore network and reactive surfaces is likely to be the overriding factor responsible for aging-related changes in HM sorption capacity, rather than direct interactions of HMs with oxidized functional groups. We observed highly weathered BC surface structures with scanning electron microscopy along with strongly increased wettability of the BCs after 15 months of soil aging as indicated by a decrease of water contact angles (from 62.4° to 4.2°).


Asunto(s)
Cadmio/química , Carbón Orgánico/química , Cobre/química , Metales Pesados/química , Contaminantes del Suelo/química , Suelo/química , Metales Pesados/análisis , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA