Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Cell ; 61(4): 535-546, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26833090

RESUMEN

XPG is a structure-specific endonuclease required for nucleotide excision repair, and incision-defective XPG mutations cause the skin cancer-prone syndrome xeroderma pigmentosum. Truncating mutations instead cause the neurodevelopmental progeroid disorder Cockayne syndrome, but little is known about how XPG loss results in this devastating disease. We identify XPG as a partner of BRCA1 and BRCA2 in maintaining genomic stability through homologous recombination (HRR). XPG depletion causes DNA double-strand breaks, chromosomal abnormalities, cell-cycle delays, defective HRR, inability to overcome replication fork stalling, and replication stress. XPG directly interacts with BRCA2, RAD51, and PALB2, and XPG depletion reduces their chromatin binding and subsequent RAD51 foci formation. Upstream in HRR, XPG interacts directly with BRCA1. Its depletion causes BRCA1 hyper-phosphorylation and persistent chromatin binding. These unexpected findings establish XPG as an HRR protein with important roles in genome stability and suggest how XPG defects produce severe clinical consequences including cancer and accelerated aging.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Síndrome de Cockayne/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Inestabilidad Genómica , Recombinación Homóloga , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Línea Celular Tumoral , Síndrome de Cockayne/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteína del Grupo de Complementación N de la Anemia de Fanconi , Genoma Humano , Células HeLa , Humanos , Ratones , Proteínas Nucleares/metabolismo , Fosforilación , Recombinasa Rad51/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
2.
J Cell Sci ; 124(Pt 1): 68-81, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21118958

RESUMEN

DNA damage can induce a tumor suppressive response termed cellular senescence. Damaged senescent cells permanently arrest growth, secrete inflammatory cytokines and other proteins and harbor persistent nuclear foci that contain DNA damage response (DDR) proteins. To understand how persistent damage foci differ from transient foci that mark repairable DNA lesions, we identify sequential events that differentiate transient foci from persistent foci, which we term 'DNA segments with chromatin alterations reinforcing senescence' (DNA-SCARS). Unlike transient foci, DNA-SCARS associate with PML nuclear bodies, lack the DNA repair proteins RPA and RAD51, lack single-stranded DNA and DNA synthesis and accumulate activated forms of the DDR mediators CHK2 and p53. DNA-SCARS form independently of p53, pRB and several other checkpoint and repair proteins but require p53 and pRb to trigger the senescence growth arrest. Importantly, depletion of the DNA-SCARS-stabilizing component histone H2AX did not deplete 53BP1 from DNA-SCARS but diminished the presence of MDC1 and activated CHK2. Furthermore, depletion of H2AX reduced both the p53-dependent senescence growth arrest and p53-independent cytokine secretion. DNA-SCARS were also observed following severe damage to multiple human cell types and mouse tissues, suggesting that they can be used in combination with other markers to identify senescent cells. Thus, DNA-SCARS are dynamically formed distinct structures that functionally regulate multiple aspects of the senescent phenotype.


Asunto(s)
Ciclo Celular/efectos de la radiación , Núcleo Celular/efectos de la radiación , Senescencia Celular/efectos de la radiación , Cromatina/metabolismo , Citocinas/metabolismo , Daño del ADN/efectos de la radiación , Animales , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Citocinas/genética , Histonas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Rayos X
3.
Biochem Biophys Res Commun ; 426(1): 100-5, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22917535

RESUMEN

Human embryonic stem cells (hESCs) hold promise for the treatment of many human pathologies. For example, hESCs and the neuronal stem cells (NSCs) and neurons derived from them have significant potential as transplantation therapies for a variety of neurodegenerative diseases. Two concerns about the use of hESCs and their differentiated derivatives are their ability to function and their ability to resist neoplastic transformation in response to stresses that inevitably arise during their preparation for transplantation. To begin to understand how these cells handle genotoxic stress, we examined the responses of hESCs and derived NSCs and neurons to ionizing radiation (IR). Undifferentiated hESCs were extremely sensitive to IR, with nearly all the cells undergoing cell death within 5-7 h. NSCs and neurons were substantially more resistant to IR, with neurons showing the most resistant. Of interest, NSCs that survived IR underwent cellular senescence and acquired astrocytic characteristics. Unlike IR-treated astrocytes, however, the NSC-derived astrocytic cells that survived IR did not display the typical pro-inflammatory, pro-carcinogenic senescence-associated secretory phenotype. These findings suggest distinct genotoxic stress-responses of hESCs and derived NSC and neuronal populations, and suggest that damaged NSCs, while failing to function, may not cause local inflammation.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Senescencia Celular , Daño del ADN , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de la radiación , Tolerancia a Radiación , Astrocitos/citología , Astrocitos/metabolismo , Biomarcadores/metabolismo , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de la radiación , Neuronas/citología , Neuronas/efectos de la radiación
4.
J Pharmacol Exp Ther ; 343(3): 763-78, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22927544

RESUMEN

Exposure of MCF-7 breast tumor cells or HCT-116 colon carcinoma cells to clinically relevant concentrations of doxorubicin (Adriamycin; Farmitalia Research Laboratories, Milan, Italy) or camptothecin results in both autophagy and senescence. To determine whether autophagy is required for chemotherapy-induced senescence, reactive oxygen generation induced by Adriamycin was suppressed by N-acetyl cysteine and glutathione, and the induction of ataxia telangiectasia mutated, p53, and p21 was modulated pharmacologically and/or genetically. In all cases, autophagy and senescence were collaterally suppressed. The close association between autophagy and senescence indicated by these experiments reflects their collateral regulation via common signaling pathways. The potential relationship between autophagy and senescence was further examined through pharmacologic inhibition of autophagy with chloroquine and 3-methyl-adenine and genetic ablation of the autophagy-related genes ATG5 and ATG7. However, inhibition of autophagy by pharmacological and genetic approaches could not entirely abrogate the senescence response, which was only reduced and/or delayed. Taken together, our findings suggest that autophagy and senescence tend to occur in parallel, and furthermore that autophagy accelerates the development of the senescent phenotype. However, these responses are not inexorably linked or interdependent, as senescence can occur when autophagy is abrogated.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Camptotecina/farmacología , Senescencia Celular/efectos de los fármacos , Daño del ADN , Doxorrubicina/farmacología , Autofagia/genética , Western Blotting , Técnicas de Cultivo de Célula , Senescencia Celular/genética , Citometría de Flujo , Células HCT116 , Humanos , Células MCF-7 , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Especies Reactivas de Oxígeno/metabolismo
5.
Cancer Metastasis Rev ; 29(2): 273-83, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20390322

RESUMEN

Cellular senescence, which is associated with aging, is a process by which cells enter a state of permanent cell cycle arrest, therefore constituting a potent tumor suppressive mechanism. Recent studies show that, despite the beneficial effects of cellular senescence, senescent cells can also exert harmful effects on the tissue microenvironment. The most significant of these effects is the acquisition of a senescent-associated secretory phenotype (SASP), which entails a striking increase in the secretion of pro-inflammatory cytokines. Here, we summarize our knowledge of the SASP and the impact it has on tissue microenvironments and ability to stimulate tumor progression.


Asunto(s)
Senescencia Celular/fisiología , Citocinas/metabolismo , Inflamación/metabolismo , Neoplasias/metabolismo , Animales , Progresión de la Enfermedad , Humanos , Inflamación/inmunología , Neoplasias/inmunología , Neoplasias/patología
6.
PLoS One ; 15(1): e0227887, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31945125

RESUMEN

Neurodegeneration is a major age-related pathology. Cognitive decline is characteristic of patients with Alzheimer's and related dementias and cancer patients after chemo- or radio-therapies. A recently emerged driver of these and other age-related pathologies is cellular senescence, a cell fate that entails a permanent cell cycle arrest and pro-inflammatory senescence-associated secretory phenotype (SASP). Although there is a link between inflammation and neurodegenerative diseases, there are many open questions regarding how cellular senescence affects neurodegenerative pathologies. Among the various cell types in the brain, astrocytes are the most abundant. Astrocytes have proliferative capacity and are essential for neuron survival. Here, we investigated the phenotype of primary human astrocytes made senescent by X-irradiation, and identified genes encoding glutamate and potassium transporters as specifically downregulated upon senescence. This down regulation led to neuronal cell death in co-culture assays. Unbiased RNA sequencing of transcripts expressed by non-senescent and senescent astrocytes confirmed that glutamate homeostasis pathway declines upon senescence. Our results suggest a key role for cellular senescence, particularly in astrocytes, in excitotoxicity, which may lead to neurodegeneration including Alzheimer's disease and related dementias.


Asunto(s)
Enfermedad de Alzheimer/genética , Astrocitos/metabolismo , Senescencia Celular/genética , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Sistema de Transporte de Aminoácidos X-AG/genética , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Puntos de Control del Ciclo Celular/efectos de la radiación , Senescencia Celular/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/patología , Cultivo Primario de Células , Rayos X
7.
Aging Cell ; 19(3): e13072, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31737985

RESUMEN

ERCC1 (excision repair cross complementing-group 1) is a mammalian endonuclease that incises the damaged strand of DNA during nucleotide excision repair and interstrand cross-link repair. Ercc1-/Δ mice, carrying one null and one hypomorphic Ercc1 allele, have been widely used to study aging due to accelerated aging phenotypes in numerous organs and their shortened lifespan. Ercc1-/Δ mice display combined features of human progeroid and cancer-prone syndromes. Although several studies report cellular senescence and apoptosis associated with the premature aging of Ercc1-/Δ mice, the link between these two processes and their physiological relevance in the phenotypes of Ercc1-/Δ mice are incompletely understood. Here, we show that ERCC1 depletion, both in cultured human fibroblasts and the skin of Ercc1-/Δ mice, initially induces cellular senescence and, importantly, increased expression of several SASP (senescence-associated secretory phenotype) factors. Cellular senescence induced by ERCC1 deficiency was dependent on activity of the p53 tumor-suppressor protein. In turn, TNFα secreted by senescent cells induced apoptosis, not only in neighboring ERCC1-deficient nonsenescent cells, but also cell autonomously in the senescent cells themselves. In addition, expression of the stem cell markers p63 and Lgr6 was significantly decreased in Ercc1-/Δ mouse skin, where the apoptotic cells are localized, compared to age-matched wild-type skin, possibly due to the apoptosis of stem cells. These data suggest that ERCC1-depleted cells become susceptible to apoptosis via TNFα secreted from neighboring senescent cells. We speculate that parts of the premature aging phenotypes and shortened health- or lifespan may be due to stem cell depletion through apoptosis promoted by senescent cells.


Asunto(s)
Apoptosis/genética , Senescencia Celular/genética , Proteínas de Unión al ADN/deficiencia , Endonucleasas/deficiencia , Fibroblastos/metabolismo , Piel/metabolismo , Células Madre/metabolismo , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Transducción de Señal/genética , Transfección , Factor de Necrosis Tumoral alfa/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Cancer Res ; 80(17): 3606-3619, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32641409

RESUMEN

Cellular senescence entails an irreversible growth arrest that evolved in part to prevent cancer. Paradoxically, senescent cells secrete proinflammatory and growth-stimulatory molecules, termed the senescence-associated secretory phenotype (SASP), which is correlated with cancer cell proliferation in culture and xenograft models. However, at what tumor stage and how senescence and the SASP act on endogenous tumor growth in vivo is unknown. To understand the role of senescence in cancer etiology, we subjected p16-3MR transgenic mice, which permit the identification and selective elimination of senescent cells in vivo, to the well-established two-step protocol of squamous cell skin carcinoma, in which tumorigenesis is initiated by a carcinogen 7,12-dimethylbenz[α]anthracene, and then promoted by 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We show that TPA promotes skin carcinogenesis by inducing senescence and a SASP. Systemic induction of senescence in nontumor-bearing p16-3MR mice using a chemotherapy followed by the two-step carcinogenesis protocol potentiated the conversion of benign papillomas to carcinomas by elevating p38MAPK and MAPK/ERK signaling. Ablation of senescent cells reduced p38MAPK and MAPK/ERK signaling, thereby preventing the progression of benign papillomas to carcinomas. Thus, we show for the first time that senescent cells are tumor promoters, not tumor initiators, and that they stimulate skin carcinogenesis by elevating p38MAPK and MAPK/ERK signaling. These findings pave the way for developing novel therapeutics against senescence-fueled cancers. SIGNIFICANCE: These findings identify chemotherapy-induced senescence as a culprit behind tumor promotion, suggesting that elimination of senescent cells after chemotherapy may reduce occurrence of second cancers decades later. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/17/3606/F1.large.jpg.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma de Células Escamosas/patología , Senescencia Celular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Neoplasias Cutáneas/patología , Animales , Carcinogénesis/patología , Carcinoma de Células Escamosas/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neoplasias Cutáneas/metabolismo
9.
J Cell Biol ; 162(7): 1197-209, 2003 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-14517203

RESUMEN

Bloom syndrome (BS) is a hereditary disorder characterized by pre- and postnatal growth retardation, genomic instability, and cancer. BLM, the gene defective in BS, encodes a DNA helicase thought to participate in genomic maintenance. We show that BS human fibroblasts undergo extensive apoptosis after DNA damage specifically when DNA replication forks are stalled. Damage during S, but not G1, caused BLM to rapidly form foci with gammaH2AX at replication forks that develop DNA breaks. These BLM foci recruited BRCA1 and NBS1. Damaged BS cells formed BRCA1/NBS1 foci with markedly delayed kinetics. Helicase-defective BLM showed dominant-negative activity with respect to apoptosis, but not BRCA1/NBS1 recruitment, suggesting catalytic and structural roles for BLM. Strikingly, inactivation of p53 prevented the death of damaged BS cells and delayed recruitment of BRCA1/NBS1. These findings suggest that BLM is an early responder to damaged replication forks. Moreover, p53 eliminates cells that rapidly assemble BRCA1/NBS1 without BLM, suggesting that BLM is essential for timely BRCA1/NBS1 function.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteína BRCA1/fisiología , Síndrome de Bloom/fisiopatología , Proteínas de Ciclo Celular/fisiología , ADN Helicasas/fisiología , Reparación del ADN/fisiología , Proteínas Nucleares/fisiología , Proteína p53 Supresora de Tumor/fisiología , Apoptosis/fisiología , Síndrome de Bloom/patología , División Celular/fisiología , Línea Celular Transformada , Células Cultivadas , Replicación del ADN/fisiología , Proteínas de Unión al ADN , Etopósido/farmacología , Fibroblastos/citología , Fibroblastos/fisiología , Fase G1/fisiología , Humanos , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fenotipo , RecQ Helicasas , Fase S/fisiología , Telomerasa/genética
10.
Methods Mol Biol ; 1896: 71-81, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30474841

RESUMEN

Senescent cells secrete diverse array of proteins. One group of proteins, damage-associated molecular pattern (DAMP) proteins exhibit relocalization from inside to outside the cell. High Mobility Group Box 1 protein (HMGB1) is the founding DAMP member. HMGB1 relocalization from the nucleus provides a molecular signature during senescence. We provide distinct molecular techniques (immunofluorescence, immunohistochemistry, and Western blot assays) to assess HMGB1 relocalization during the initial stages of senescence.


Asunto(s)
Alarminas/metabolismo , Senescencia Celular , Proteína HMGB1/metabolismo , Riñón/metabolismo , Piel/metabolismo , Animales , Células Cultivadas , Riñón/citología , Ratones , Ratones Endogámicos C57BL , Piel/citología
11.
Aging Cell ; 18(4): e12971, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31148373

RESUMEN

Some studies show eliminating senescent cells rejuvenate aged mice and attenuate deleterious effects of chemotherapy. Nevertheless, it remains unclear whether senescence affects immune cell function. We provide evidence that exposure of mice to ionizing radiation (IR) promotes the senescent-associated secretory phenotype (SASP) and expression of p16INK4a in splenic cell populations. We observe splenic T cells exhibit a reduced proliferative response when cultured with allogenic cells in vitro and following viral infection in vivo. Using p16-3MR mice that allow elimination of p16INK4a -positive cells with exposure to ganciclovir, we show that impaired T-cell proliferation is partially reversed, mechanistically dependent on p16INK4a expression and the SASP. Moreover, we found macrophages isolated from irradiated spleens to have a reduced phagocytosis activity in vitro, a defect also restored by the elimination of p16INK4a expression. Our results provide molecular insight on how senescence-inducing IR promotes loss of immune cell fitness, which suggest senolytic drugs may improve immune cell function in aged and patients undergoing cancer treatment.


Asunto(s)
Senescencia Celular/efectos de la radiación , Radiación Ionizante , Bazo/metabolismo , Bazo/efectos de la radiación , Linfocitos T/inmunología , Linfocitos T/efectos de la radiación , Animales , Antivirales/uso terapéutico , Infecciones por Arenaviridae/tratamiento farmacológico , Infecciones por Arenaviridae/inmunología , Infecciones por Arenaviridae/virología , Proliferación Celular/efectos de la radiación , Células Cultivadas , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Ganciclovir/uso terapéutico , Virus de la Coriomeningitis Linfocítica/inmunología , Macrófagos/metabolismo , Ratones , Ratones Transgénicos , Fenotipo , Rejuvenecimiento/fisiología , Bazo/virología
12.
Sci Rep ; 8(1): 2410, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402901

RESUMEN

Processes that have been linked to aging and cancer include an inflammatory milieu driven by senescent cells. Senescent cells lose the ability to divide, essentially irreversibly, and secrete numerous proteases, cytokines and growth factors, termed the senescence-associated secretory phenotype (SASP). Senescent cells that lack p53 tumor suppressor function show an exaggerated SASP, suggesting the SASP is negatively controlled by p53. Here, we show that increased p53 activity caused by small molecule inhibitors of MDM2, which promotes p53 degradation, reduces inflammatory cytokine production by senescent cells. Upon treatment with the MDM2 inhibitors nutlin-3a or MI-63, human cells acquired a senescence-like growth arrest, but the arrest was reversible. Importantly, the inhibitors reduced expression of the signature SASP factors IL-6 and IL-1α by cells made senescent by genotoxic stimuli, and suppressed the ability of senescent fibroblasts to stimulate breast cancer cell aggressiveness. Our findings suggest that MDM2 inhibitors could reduce cancer progression in part by reducing the pro-inflammatory environment created by senescent cells.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Indoles/farmacología , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-mdm2/genética , Compuestos de Espiro/farmacología , Proteína p53 Supresora de Tumor/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Línea Celular , Senescencia Celular/genética , Senescencia Celular/efectos de la radiación , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Prepucio/citología , Rayos gamma , Humanos , Interleucina-1alfa/antagonistas & inhibidores , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-6/antagonistas & inhibidores , Interleucina-6/genética , Interleucina-6/metabolismo , Pulmón/citología , Masculino , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/agonistas , Proteína p53 Supresora de Tumor/metabolismo
13.
Cancer Res ; 62(9): 2637-43, 2002 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-11980661

RESUMEN

Loss of heterozygosity on human chromosome 3p21.3 is a frequent occurrence in many tumor types. In a previous study, our laboratory demonstrated that an 80-kb P1 clone from chromosome 3 suppresses the tumorigenicity of the mouse fibrosarcoma cell line A9. Two cDNAs corresponding to genes encoded on this P1 clone, semaphorin 3F (SEMA3F) and N23, were tested for their effects on in vitro and in vivo growth characteristics after transfection into mouse A9 cells. Transfection of SEMA3F cDNA resulted in complete loss of tumorigenicity in nude mice, whereas transfection of N23 had no effect. Moreover, SEMA3F also functioned to block apoptosis of transfected A9 cells treated with Taxol or Adriamycin. The human ovarian adenocarcinoma cell line HEY showed a similar result as A9 cells, but the small cell lung cancer line GLC45 was unaffected by expression of SEMA3F.


Asunto(s)
Cromosomas Humanos Par 3/genética , Genes Supresores de Tumor , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Apoptosis/genética , Carcinoma de Células Pequeñas/genética , Carcinoma de Células Pequeñas/patología , ADN Complementario/genética , Femenino , Fibrosarcoma/genética , Fibrosarcoma/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Transfección
15.
Nat Cell Biol ; 17(8): 1049-61, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26147250

RESUMEN

The TOR (target of rapamycin) kinase limits longevity by poorly understood mechanisms. Rapamycin suppresses the mammalian TORC1 complex, which regulates translation, and extends lifespan in diverse species, including mice. We show that rapamycin selectively blunts the pro-inflammatory phenotype of senescent cells. Cellular senescence suppresses cancer by preventing cell proliferation. However, as senescent cells accumulate with age, the senescence-associated secretory phenotype (SASP) can disrupt tissues and contribute to age-related pathologies, including cancer. MTOR inhibition suppressed the secretion of inflammatory cytokines by senescent cells. Rapamycin reduced IL6 and other cytokine mRNA levels, but selectively suppressed translation of the membrane-bound cytokine IL1A. Reduced IL1A diminished NF-κB transcriptional activity, which controls much of the SASP; exogenous IL1A restored IL6 secretion to rapamycin-treated cells. Importantly, rapamycin suppressed the ability of senescent fibroblasts to stimulate prostate tumour growth in mice. Thus, rapamycin might ameliorate age-related pathologies, including late-life cancer, by suppressing senescence-associated inflammation.


Asunto(s)
Interleucina-1alfa/metabolismo , Neoplasias de la Próstata/enzimología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Senescencia Celular , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Regulación Neoplásica de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-1alfa/genética , Interleucina-6/metabolismo , Masculino , Ratones SCID , Mitoxantrona/farmacología , FN-kappa B/metabolismo , Fenotipo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Interferencia de ARN , ARN Mensajero/metabolismo , Sirolimus/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Factores de Tiempo , Transcripción Genética , Transfección , Carga Tumoral , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
16.
J Cell Biol ; 201(4): 613-29, 2013 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-23649808

RESUMEN

Cellular senescence irreversibly arrests proliferation in response to potentially oncogenic stress. Senescent cells also secrete inflammatory cytokines such as IL-6, which promote age-associated inflammation and pathology. HMGB1 (high mobility group box 1) modulates gene expression in the nucleus, but certain immune cells secrete HMGB1 as an extracellular Alarmin to signal tissue damage. We show that nuclear HMGB1 relocalized to the extracellular milieu in senescent human and mouse cells in culture and in vivo. In contrast to cytokine secretion, HMGB1 redistribution required the p53 tumor suppressor, but not its activator ATM. Moreover, altered HMGB1 expression induced a p53-dependent senescent growth arrest. Senescent fibroblasts secreted oxidized HMGB1, which stimulated cytokine secretion through TLR-4 signaling. HMGB1 depletion, HMGB1 blocking antibody, or TLR-4 inhibition attenuated senescence-associated IL-6 secretion, and exogenous HMGB1 stimulated NF-κB activity and restored IL-6 secretion to HMGB1-depleted cells. Our findings identify senescence as a novel biological setting in which HMGB1 functions and link HMGB1 redistribution to p53 activity and senescence-associated inflammation.


Asunto(s)
Regulación de la Expresión Génica , Proteína HMGB1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Citocinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamación , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Proteínas Supresoras de Tumor/metabolismo
17.
Cell Cycle ; 10(12): 1998-2007, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21558802

RESUMEN

XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar subnuclear redistribution in S phase and colocalize in nuclear foci. The co-localization was observed in mid- to late S phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain both protein markers of stalled replication forks and telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each, and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity, and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S phase that is, at least in part, performed coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas Nucleares/metabolismo , RecQ Helicasas/metabolismo , Factores de Transcripción/metabolismo , Síndrome de Werner/enzimología , Sitios de Unión , ADN Helicasas , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/fisiología , Endonucleasas/fisiología , Exodesoxirribonucleasas/fisiología , Humanos , Proteínas Nucleares/fisiología , Unión Proteica , RecQ Helicasas/fisiología , Fase S , Factores de Transcripción/fisiología , Helicasa del Síndrome de Werner , Xerodermia Pigmentosa
18.
Nat Cell Biol ; 11(8): 973-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19597488

RESUMEN

Cellular senescence suppresses cancer by stably arresting the proliferation of damaged cells. Paradoxically, senescent cells also secrete factors that alter tissue microenvironments. The pathways regulating this secretion are unknown. We show that damaged human cells develop persistent chromatin lesions bearing hallmarks of DNA double-strand breaks (DSBs), which initiate increased secretion of inflammatory cytokines such as interleukin-6 (IL-6). Cytokine secretion occurred only after establishment of persistent DNA damage signalling, usually associated with senescence, not after transient DNA damage responses (DDRs). Initiation and maintenance of this cytokine response required the DDR proteins ATM, NBS1 and CHK2, but not the cell-cycle arrest enforcers p53 and pRb. ATM was also essential for IL-6 secretion during oncogene-induced senescence and by damaged cells that bypass senescence. Furthermore, DDR activity and IL-6 were elevated in human cancers, and ATM-depletion suppressed the ability of senescent cells to stimulate IL-6-dependent cancer cell invasiveness. Thus, in addition to orchestrating cell-cycle checkpoints and DNA repair, a new and important role of the DDR is to allow damaged cells to communicate their compromised state to the surrounding tissue.


Asunto(s)
Senescencia Celular/fisiología , Citocinas/metabolismo , Daño del ADN , Transducción de Señal/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Células Cultivadas , Quinasa de Punto de Control 2 , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ensayo de Inmunoadsorción Enzimática , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Interleucina-6/metabolismo , Masculino , Microscopía Fluorescente , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Transfección , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
19.
J Cell Biol ; 181(3): 447-60, 2008 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-18443218

RESUMEN

Telomeres are maintained by three DNA-binding proteins (telomeric repeat binding factor 1 [TRF1], TRF2, and protector of telomeres 1 [POT1]) and several associated factors. One factor, TRF1-interacting protein 2 (TIN2), binds TRF1 and TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and hRap1, these form a soluble complex that may be the core telomere maintenance complex. It is not clear whether subcomplexes also exist in vivo. We provide evidence for two TIN2 subcomplexes with distinct functions in human cells. We isolated these two TIN2 subcomplexes from nuclear lysates of unperturbed cells and cells expressing TIN2 mutants TIN2-13 and TIN2-15C, which cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere dysfunction and cell death. Our findings suggest that distinct TIN2 complexes exist and that TIN2-15C-sensitive subcomplexes are particularly important for cell survival in the absence of functional p53.


Asunto(s)
Supervivencia Celular/fisiología , Sustancias Macromoleculares/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Línea Celular , Senescencia Celular/fisiología , Aberraciones Cromosómicas , Humanos , Ratones , Mutación , Complejo Shelterina , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
20.
Cell ; 128(5): 977-89, 2007 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-17350580

RESUMEN

Females with germline mutations in BRCA1 are predisposed to develop breast and ovarian cancers. A previous report indicated that BRCA1 colocalizes with and is necessary for the correct localization of XIST, a noncoding RNA that coats the inactive X chromosome (Xi) to mediate formation of facultative heterochromatin. A model emerged from this study suggesting that loss of BRCA1 in female cells could reactivate genes on the Xi through loss of the XIST RNA. However, our independent studies of BRCA1 and XIST RNA revealed little evidence to support this model. We report that BRCA1 is not enriched on XIST RNA-coated chromatin of the Xi. Neither mutation nor depletion of BRCA1 causes significant changes in XIST RNA localization or X-linked gene expression. Together, these results do not support a role for BRCA1 in promoting XIST RNA localization to the Xi or regulating XIST-dependent functions in maintaining the stability of facultative heterochromatin.


Asunto(s)
Proteína BRCA1/metabolismo , ARN no Traducido/metabolismo , Inactivación del Cromosoma X , Animales , Proteína BRCA1/genética , Línea Celular , Línea Celular Tumoral , Cromosomas Humanos X , Embrión de Mamíferos/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Genes BRCA1 , Humanos , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Mutación , Interferencia de ARN , ARN Largo no Codificante , Cromosoma X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA