Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Gastroenterology ; 161(1): 239-254.e9, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33819486

RESUMEN

BACKGROUND & AIMS: In homeostasis, intestinal cell fate is controlled by balanced gradients of morphogen signaling. The bone morphogenetic protein (BMP) pathway has a physiological, prodifferentiation role, predominantly inferred through previous experimental pathway inactivation. Intestinal regeneration is underpinned by dedifferentiation and cell plasticity, but the signaling pathways that regulate this adaptive reprogramming are not well understood. We assessed the BMP signaling landscape and investigated the impact and therapeutic potential of pathway manipulation in homeostasis and regeneration. METHODS: A novel mouse model was generated to assess the effect of the autocrine Bmp4 ligand on individual secretory cell fate. We spatiotemporally mapped BMP signaling in mouse and human regenerating intestine. Transgenic models were used to explore the functional impact of pathway manipulation on stem cell fate and intestinal regeneration. RESULTS: In homeostasis, ligand exposure reduced proliferation, expedited terminal differentiation, abrogated secretory cell survival, and prevented dedifferentiation. After ulceration, physiological attenuation of BMP signaling arose through upregulation of the secreted antagonist Grem1 from topographically distinct populations of fibroblasts. Concomitant expression supported functional compensation after Grem1 deletion from tissue-resident cells. BMP pathway manipulation showed that antagonist-mediated BMP attenuation was obligatory but functionally submaximal, because regeneration was impaired or enhanced by epithelial overexpression of Bmp4 or Grem1, respectively. Mechanistically, Bmp4 abrogated regenerative stem cell reprogramming despite a convergent impact of YAP/TAZ on cell fate in remodeled wounds. CONCLUSIONS: BMP signaling prevents epithelial dedifferentiation, and pathway attenuation through stromal Grem1 upregulation was required for adaptive reprogramming in intestinal regeneration. This intercompartmental antagonism was functionally submaximal, raising the possibility of therapeutic pathway manipulation in inflammatory bowel disease.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Colitis/metabolismo , Colon/metabolismo , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Regeneración , Animales , Comunicación Autocrina , Proteína Morfogenética Ósea 4/genética , Diferenciación Celular , Proliferación Celular , Colitis/genética , Colitis/patología , Colon/patología , Células Epiteliales/patología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Mucosa Intestinal/patología , Intestino Delgado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Traumatismos Experimentales por Radiación/genética , Traumatismos Experimentales por Radiación/patología , Repitelización , Transducción de Señal
2.
Gut ; 69(6): 1092-1103, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31563876

RESUMEN

OBJECTIVE: Pathological Wnt pathway activation is a conserved hallmark of colorectal cancer. Wnt-activating mutations can be divided into: i) ligand-independent (LI) alterations in intracellular signal transduction proteins (Adenomatous polyposis coli, ß-catenin), causing constitutive pathway activation and ii) ligand-dependent (LD) mutations affecting the synergistic R-Spondin axis (RNF43, RSPO-fusions) acting through amplification of endogenous Wnt signal transmembrane transduction. Our aim was to exploit differential Wnt target gene expression to generate a mutation-agnostic biomarker for LD tumours. DESIGN: We undertook harmonised multi-omic analysis of discovery (n=684) and validation cohorts (n=578) of colorectal tumours collated from publicly available data and the Stratification in Colorectal Cancer Consortium. We used mutation data to establish molecular ground truth and subdivide lesions into LI/LD tumour subsets. We contrasted transcriptional, methylation, morphological and clinical characteristics between groups. RESULTS: Wnt disrupting mutations were mutually exclusive. Desmoplastic stromal upregulation of RSPO may compensate for absence of epithelial mutation in a subset of stromal-rich tumours. Key Wnt negative regulator genes were differentially expressed between LD/LI tumours, with targeted hypermethylation of some genes (AXIN2, NKD1) occurring even in CIMP-negative LD cancers. AXIN2 mRNA expression was used as a discriminatory molecular biomarker to distinguish LD/LI tumours (area under the curve >0.93). CONCLUSIONS: Epigenetic suppression of appropriate Wnt negative feedback loops is selectively advantageous in LD tumours and differential AXIN2 expression in LD/LI lesions can be exploited as a molecular biomarker. Distinguishing between LD/LI tumour types is important; patients with LD tumours retain sensitivity to Wnt ligand inhibition and may be stratified at diagnosis to clinical trials of Porcupine inhibitors.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Transducción de Señal/genética , Proteína Wnt1/metabolismo , Anciano , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Marcadores Genéticos/genética , Humanos , Masculino , Persona de Mediana Edad , Proteína Wnt1/genética
3.
Gut ; 68(6): 985-995, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-29991641

RESUMEN

OBJECTIVE: IBD confers an increased lifetime risk of developing colorectal cancer (CRC), and colitis-associated CRC (CA-CRC) is molecularly distinct from sporadic CRC (S-CRC). Here we have dissected the evolutionary history of CA-CRC using multiregion sequencing. DESIGN: Exome sequencing was performed on fresh-frozen multiple regions of carcinoma, adjacent non-cancerous mucosa and blood from 12 patients with CA-CRC (n=55 exomes), and key variants were validated with orthogonal methods. Genome-wide copy number profiling was performed using single nucleotide polymorphism arrays and low-pass whole genome sequencing on archival non-dysplastic mucosa (n=9), low-grade dysplasia (LGD; n=30), high-grade dysplasia (HGD; n=13), mixed LGD/HGD (n=7) and CA-CRC (n=19). Phylogenetic trees were reconstructed, and evolutionary analysis used to reveal the temporal sequence of events leading to CA-CRC. RESULTS: 10/12 tumours were microsatellite stable with a median mutation burden of 3.0 single nucleotide alterations (SNA) per Mb, ~20% higher than S-CRC (2.5 SNAs/Mb), and consistent with elevated ageing-associated mutational processes. Non-dysplastic mucosa had considerable mutation burden (median 47 SNAs), including mutations shared with the neighbouring CA-CRC, indicating a precancer mutational field. CA-CRCs were often near triploid (40%) or near tetraploid (20%) and phylogenetic analysis revealed that copy number alterations (CNAs) began to accrue in non-dysplastic bowel, but the LGD/HGD transition often involved a punctuated 'catastrophic' CNA increase. CONCLUSIONS: Evolutionary genomic analysis revealed precancer clones bearing extensive SNAs and CNAs, with progression to cancer involving a dramatic accrual of CNAs at HGD. Detection of the cancerised field is an encouraging prospect for surveillance, but punctuated evolution may limit the window for early detection.


Asunto(s)
Transformación Celular Neoplásica/patología , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Transformación Celular Neoplásica/genética , Colonoscopía/métodos , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Polimorfismo de Nucleótido Simple/genética , Medición de Riesgo , Índice de Severidad de la Enfermedad
4.
J Pathol ; 242(2): 178-192, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28299802

RESUMEN

The functional role of bone morphogenetic protein (BMP) signalling in colorectal cancer (CRC) is poorly defined, with contradictory results in cancer cell line models reflecting the inherent difficulties of assessing a signalling pathway that is context-dependent and subject to genetic constraints. By assessing the transcriptional response of a diploid human colonic epithelial cell line to BMP ligand stimulation, we generated a prognostic BMP signalling signature, which was applied to multiple CRC datasets to investigate BMP heterogeneity across CRC molecular subtypes. We linked BMP and Notch signalling pathway activity and function in human colonic epithelial cells, and normal and neoplastic tissue. BMP induced Notch through a γ-secretase-independent interaction, regulated by the SMAD proteins. In homeostasis, BMP/Notch co-localization was restricted to cells at the top of the intestinal crypt, with more widespread interaction in some human CRC samples. BMP signalling was downregulated in the majority of CRCs, but was conserved specifically in mesenchymal-subtype tumours, where it interacts with Notch to induce an epithelial-mesenchymal transition (EMT) phenotype. In intestinal homeostasis, BMP-Notch pathway crosstalk is restricted to differentiating cells through stringent pathway segregation. Conserved BMP activity and loss of signalling stringency in mesenchymal-subtype tumours promotes a synergistic BMP-Notch interaction, and this correlates with poor patient prognosis. BMP signalling heterogeneity across CRC subtypes and cell lines can account for previous experimental contradictions. Crosstalk between the BMP and Notch pathways will render mesenchymal-subtype CRC insensitive to γ-secretase inhibition unless BMP activation is concomitantly addressed. © 2017 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal , Receptores Notch/genética , Transducción de Señal , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Estudios de Cohortes , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/patología , Células Epiteliales/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Modelos Biológicos , Fenotipo , Pronóstico , Receptores Notch/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo
5.
J Pathol ; 237(2): 135-45, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25974319

RESUMEN

The conventional model of intestinal epithelial architecture describes a unidirectional tissue organizational hierarchy with stem cells situated at the crypt base and daughter cells proliferating and terminally differentiating as they progress along the vertical (crypt-luminal) axis. In this model, the fate of a cell that has left the niche is determined and its lifespan limited. Evidence is accumulating to suggest that stem cell control and daughter cell fate determination is not solely an intrinsic, cell autonomous property but is heavily influenced by the microenvironment including paracrine, mesenchymal, and endogenous epithelial morphogen gradients. Recent research suggests that in intestinal homeostasis, stem cells transit reversibly between states of variable competence in the niche. Furthermore, selective pressures that disrupt the homeostatic balance, such as intestinal inflammation or morphogen dysregulation, can cause committed progenitor cells and even some differentiated cells to regain stem cell properties. Importantly, it has been recently shown that this disruption of cell fate determination can lead to somatic mutation and neoplastic transformation of cells situated outside the crypt base stem cell niche. This paper reviews the exciting developments in the study of stem cell dynamics in homeostasis, intestinal regeneration, and carcinogenesis, and explores the implications for human disease and cancer therapies.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Enfermedades Intestinales/patología , Intestinos/patología , Nicho de Células Madre , Células Madre/patología , Animales , Biomarcadores/metabolismo , Proliferación Celular , Homeostasis , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Intestinales/genética , Enfermedades Intestinales/metabolismo , Mucosa Intestinal/metabolismo , Neoplasias Intestinales/metabolismo , Neoplasias Intestinales/patología , Fenotipo , Transducción de Señal , Células Madre/metabolismo
6.
Gut ; 63(5): 792-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23676439

RESUMEN

OBJECTIVE: FBXW7 encodes the substrate recognition component of a ubiquitin ligase that degrades targets such as Notch1, c-Jun, c-Myc and cyclin E. FBXW7 mutations occur in several tumour types, including colorectal cancers. The FBXW7 mutation spectrum in cancers is unusual. Some tumours have biallelic loss of function mutations but most have monoallelic missense mutations involving specific arginine residues at ß-propellor tips involved in substrate recognition. DESIGN: FBXW7 functional studies have generally used null systems. In order to analyse the most common mutations in human tumours, we created a Fbxw7(fl(R482Q))(/+) mouse and conditionally expressed this mutation in the intestines using Vill-Cre. We compared these mice with heterozygous null (Fbxw7(+/-)) mutants. RESULTS: A few sizeable intestinal adenomas occurred in approximately 30% of R482Q/+ and Fbxw7(+/-) mice at age >300 days. Breeding the R482Q allele onto Apc mutant backgrounds led to accelerated morbidity and increased polyp numbers and size. Within the small bowel, polyp distribution was shifted proximally. Elevated levels of two particular Fbxw7 substrates, Klf5 and Tgif1, were found in normal intestine and adenomas of R482Q/+, R482Q/R482Q and Fbxw7(-/-) mice, but not Fbxw7(+/-) animals. On the Apc mutant background, Fbxw7(+/-) mutants had a phenotype intermediate between Fbxw7 wild-type and R482Q/+ mice. CONCLUSIONS: Heterozygous Fbxw7 propellor tip (R482Q) mutations promote intestinal tumorigenesis on an Apc mutant background. Klf5 and Tgif1 are strong candidates for mediating this effect. Although heterozygous null Fbxw7 mutations also promote tumour growth, these have a weaker effect than R482Q. These findings explain the FBXW7 mutation spectrum found in human cancers, and emphasise the need for animal models faithfully to reflect human disease.


Asunto(s)
Pólipos Adenomatosos/genética , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Neoplasias Colorrectales/genética , Proteínas F-Box/genética , Pólipos Intestinales/genética , Mutación Missense , Ubiquitina-Proteína Ligasas/genética , Animales , Western Blotting , Línea Celular Tumoral , Proteína 7 que Contiene Repeticiones F-Box-WD , Marcadores Genéticos , Heterocigoto , Humanos , Inmunohistoquímica , Ratones
7.
Gut ; 62(1): 83-93, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22287596

RESUMEN

OBJECTIVE: Wnt signalling is critical for normal intestinal development and homeostasis. Wnt dysregulation occurs in almost all human and murine intestinal tumours and an optimal but not excessive level of Wnt activation is considered favourable for tumourigenesis. The authors assessed effects of pan-intestinal Wnt activation on tissue homeostasis, taking into account underlying physiological Wnt activity and stem-cell number in each region of the bowel. DESIGN: The authors generated mice that expressed temporally controlled, stabilised ß-catenin along the crypt-villus axis throughout the intestines. Physiological Wnt target gene activity was assessed in different regions of normal mouse and human tissue. Human intestinal tumour mutation spectra were analysed. RESULTS: In the mouse, ß-catenin stabilisation resulted in a graduated neoplastic response, ranging from dysplastic transformation of the entire epithelium in the proximal small bowel to slightly enlarged crypts of non-dysplastic morphology in the colorectum. In contrast, stem and proliferating cell numbers were increased in all intestinal regions. In the normal mouse and human intestines, stem-cell and Wnt gradients were non-identical, but higher in the small bowel than large bowel in both species. There was also variation in the expression of some Wnt modulators. Human tumour analysis confirmed that different APC mutation spectra are selected in different regions of the bowel. CONCLUSIONS: There are variable gradients in stem-cell number, physiological Wnt activity and response to pathologically increased Wnt signalling along the crypt-villus axis and throughout the length of the intestinal tract. The authors propose that this variation influences regional mutation spectra, tumour susceptibility and lesion distribution in mice and humans.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Mucosa Intestinal/metabolismo , Neoplasias Intestinales/metabolismo , Células Madre/fisiología , Vía de Señalización Wnt/fisiología , Animales , Biomarcadores de Tumor/genética , Recuento de Células , Genes APC , Marcadores Genéticos , Homeostasis , Humanos , Hibridación in Situ , Mucosa Intestinal/citología , Mucosa Intestinal/patología , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Intestinos/citología , Intestinos/patología , Ratones , Ratones Transgénicos , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
8.
Nat Commun ; 15(1): 4976, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862520

RESUMEN

Twisted gastrulation (TWSG1) is an evolutionarily conserved secreted glycoprotein which controls signaling by Bone Morphogenetic Proteins (BMPs). TWSG1 binds BMPs and their antagonist Chordin to control BMP signaling during embryonic development, kidney regeneration and cancer. We report crystal structures of TWSG1 alone and in complex with a BMP ligand, Growth Differentiation Factor 5. TWSG1 is composed of two distinct, disulfide-rich domains. The TWSG1 N-terminal domain occupies the BMP type 1 receptor binding site on BMPs, whereas the C-terminal domain binds to a Chordin family member. We show that TWSG1 inhibits BMP function in cellular signaling assays and mouse colon organoids. This inhibitory function is abolished in a TWSG1 mutant that cannot bind BMPs. The same mutation in the Drosophila TWSG1 ortholog Tsg fails to mediate BMP gradient formation required for dorsal-ventral axis patterning of the early embryo. Our studies reveal the evolutionarily conserved mechanism of BMP signaling inhibition by TWSG1.


Asunto(s)
Proteínas Morfogenéticas Óseas , Transducción de Señal , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Ratones , Humanos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/química , Glicoproteínas/metabolismo , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Sitios de Unión , Dominios Proteicos , Unión Proteica , Organoides/metabolismo , Organoides/embriología , Células HEK293 , Gastrulación/genética , Mutación , Cristalografía por Rayos X , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas
9.
Nat Genet ; 56(3): 458-472, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351382

RESUMEN

Molecular stratification using gene-level transcriptional data has identified subtypes with distinctive genotypic and phenotypic traits, as exemplified by the consensus molecular subtypes (CMS) in colorectal cancer (CRC). Here, rather than gene-level data, we make use of gene ontology and biological activation state information for initial molecular class discovery. In doing so, we defined three pathway-derived subtypes (PDS) in CRC: PDS1 tumors, which are canonical/LGR5+ stem-rich, highly proliferative and display good prognosis; PDS2 tumors, which are regenerative/ANXA1+ stem-rich, with elevated stromal and immune tumor microenvironmental lineages; and PDS3 tumors, which represent a previously overlooked slow-cycling subset of tumors within CMS2 with reduced stem populations and increased differentiated lineages, particularly enterocytes and enteroendocrine cells, yet display the worst prognosis in locally advanced disease. These PDS3 phenotypic traits are evident across numerous bulk and single-cell datasets, and demark a series of subtle biological states that are currently under-represented in pre-clinical models and are not identified using existing subtyping classifiers.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/patología , Pronóstico , Diferenciación Celular/genética , Fenotipo , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica
10.
J Pathol ; 227(2): 131-5, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22323043

RESUMEN

There is good evidence to show that cancer-causing mutations are not always simple gain- and loss-of-function changes. One example is the APC gene, where the combination of mutations produces a 'just-right' level of Wnt signalling. A recent article by Berger and colleagues posited a 'continuum model' in which increasing or decreasing gene expression of function was linearly associated with tumourigenesis. Berger also proposed an 'obligate haploinsufficiency' or 'fail-safe' model, whereby heterozygous mutations produce sufficient derangement for tumourigenesis, yet homozygous mutations are cell-lethal or senescence-causing. One gene highlighted by Berger and colleagues as an example of a gene following a 'continuum' or 'fail-safe' model was FBXW7/CDC4, a gene mutated in several different types of malignancy. We have analysed the COSMIC FBXW7 data. FBXW7 does not obviously follow a 'continuum' or 'fail-safe' model and the most common mutant genotypes are mono-allelic missense changes that affect critical arginine residues involved in interactions with substrates. There is no strong selection for complete loss of FBXW7 protein function, but bi-allelic inactivating mutations do occur. For FBXW7, we suggest a variant of 'just right' which we call 'just enough'. For FBXW7 mutations that occur away from the propellor tips, the heterozygote may have some effect on tumourigenesis, but there is selective pressure for a 'second hit'. For propellor tip mutations, by contrast, there is weak pressure for a 'second hit' because they usually provide sufficient functional derangement on their own.


Asunto(s)
Proteínas de Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Proteínas F-Box/genética , Modelos Genéticos , Mutación , Neoplasias/genética , Ubiquitina-Proteína Ligasas/genética , Transformación Celular Neoplásica/patología , Proteína 7 que Contiene Repeticiones F-Box-WD , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Heterocigoto , Humanos , Neoplasias/patología
11.
J Pathol ; 226(1): 73-83, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22009253

RESUMEN

Adenomatous polyposis coli (APC ) mutations are found in most colorectal tumours. These mutations are almost always protein-truncating, deleting both central domains that regulate Wnt signalling and C-terminal domains that interact with the cytoskeleton. The importance of Wnt dysregulation for colorectal tumourigenesis is well characterized. It is, however, unclear whether loss of C-terminal functions contributes to tumourigenesis, although this protein region has been implicated in cellular processes--including polarity, migration, mitosis, and chromosomal instability (CIN)­that have been postulated as critical for the development and progression of intestinal tumours. Since almost all APC mutations in human patients disrupt both central and C-terminal regions, we created a mouse model to test the role of the C-terminus of APC in intestinal tumourigenesis. This mouse (Apc(ΔSAMP)) carries an internal deletion within Apc that dysregulates Wnt by removing the beta-catenin-binding and SAMP repeats, but leaves the C-terminus intact. We compared Apc(ΔSAMP) mice with Apc(1322T) animals. The latter allele represented the most commonly found human APC mutation and was identical to Apc(ΔSAMP) except for absence of the entire C-terminus. Apc(ΔSAMP) mice developed numerous intestinal adenomas indistinguishable in number, location, and dysplasia from those seen in Apc(1322T) mice. No carcinomas were found in Apc(ΔSAMP) or Apc(1322T) animals. While similar disruption of the Wnt signalling pathway was observed in tumours from both mice, no evidence of differential C-terminus functions (such as cell migration, CIN, or localization of APC and EB1) was seen. We conclude that the C-terminus of APC does not influence intestinal adenoma development or progression.


Asunto(s)
Adenoma/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Neoplasias Intestinales/genética , Adenoma/patología , Proteína de la Poliposis Adenomatosa del Colon/química , Animales , Western Blotting , Movimiento Celular/genética , Progresión de la Enfermedad , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Hibridación in Situ , Neoplasias Intestinales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Análisis de Secuencia por Matrices de Oligonucleótidos , Estructura Terciaria de Proteína/genética , Transducción de Señal/genética , Vía de Señalización Wnt
12.
EMBO Mol Med ; 15(10): e17094, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37589076

RESUMEN

High-risk endometrial cancer has poor prognosis and is increasing in incidence. However, understanding of the molecular mechanisms which drive this disease is limited. We used genetically engineered mouse models (GEMM) to determine the functional consequences of missense and loss of function mutations in Fbxw7, Pten and Tp53, which collectively occur in nearly 90% of high-risk endometrial cancers. We show that Trp53 deletion and missense mutation cause different phenotypes, with the latter a substantially stronger driver of endometrial carcinogenesis. We also show that Fbxw7 missense mutation does not cause endometrial neoplasia on its own, but potently accelerates carcinogenesis caused by Pten loss or Trp53 missense mutation. By transcriptomic analysis, we identify LEF1 signalling as upregulated in Fbxw7/FBXW7-mutant mouse and human endometrial cancers, and in human isogenic cell lines carrying FBXW7 mutation, and validate LEF1 and the additional Wnt pathway effector TCF7L2 as novel FBXW7 substrates. Our study provides new insights into the biology of high-risk endometrial cancer and suggests that targeting LEF1 may be worthy of investigation in this treatment-resistant cancer subgroup.


Asunto(s)
Carcinogénesis , Neoplasias Endometriales , Femenino , Humanos , Ratones , Animales , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Carcinogénesis/genética , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Mutación , Mutación Missense
13.
Cancer Immunol Res ; 11(8): 1137-1155, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37309673

RESUMEN

Intraepithelial lymphocytes (IEL) expressing γδ T-cell receptors (γδTCR) play key roles in elimination of colon cancer. However, the precise mechanisms by which progressing cancer cells evade immunosurveillance by these innate T cells are unknown. Here, we investigated how loss of the Apc tumor suppressor in gut tissue could enable nascent cancer cells to escape immunosurveillance by cytotoxic γδIELs. In contrast with healthy intestinal or colonic tissue, we found that γδIELs were largely absent from the microenvironment of both mouse and human tumors, and that butyrophilin-like (BTNL) molecules, which can critically regulate γδIEL through direct γδTCR interactions, were also downregulated in tumors. We then demonstrated that ß-catenin activation through loss of Apc rapidly suppressed expression of the mRNA encoding the HNF4A and HNF4G transcription factors, preventing their binding to promoter regions of Btnl genes. Reexpression of BTNL1 and BTNL6 in cancer cells increased γδIEL survival and activation in coculture assays but failed to augment their cancer-killing ability in vitro or their recruitment to orthotopic tumors. However, inhibition of ß-catenin signaling via genetic deletion of Bcl9/Bcl9L in either Apc-deficient or mutant ß-catenin mouse models restored Hnf4a, Hnf4g, and Btnl gene expression and γδ T-cell infiltration into tumors. These observations highlight an immune-evasion mechanism specific to WNT-driven colon cancer cells that disrupts γδIEL immunosurveillance and furthers cancer progression.


Asunto(s)
Neoplasias del Colon , Linfocitos Intraepiteliales , Ratones , Animales , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Linfocitos Intraepiteliales/metabolismo , Butirofilinas/genética , Butirofilinas/metabolismo , Neoplasias del Colon/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Microambiente Tumoral
14.
J Pathol ; 224(2): 180-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21503901

RESUMEN

FBXW7 is the substrate recognition component of a SCF-type E3 ubiquitin ligase. It has multiple targets such as Notch1, c-Jun, and cyclin E that function in critical developmental and signalling pathways. Mutations in FBXW7 are often found in many types of cancer. In most cases, these mutations do not inactivate the protein, but are mono-allelic missense changes at specific arginine resides involved in substrate binding. We have hypothesized that FBXW7 mutations are selected in cancers for reasons other than haploinsufficiency or full loss-of-function. Given that the existing mutant Fbxw7 mice carry null alleles, we created a mouse model carrying one of the commonly occurring point mutations (Fbxw7(R482Q)) in the WD40 substrate recognition domain of Fbxw7. Mice heterozygous for this mutation apparently developed normally in utero, died perinatally due to a defect in lung development, and in some cases showed cleft palate and eyelid fusion defects. By comparison, Fbxw7(+/-) mice were viable and developed normally. Fbxw7(-/-) animals died of vascular abnormalities at E10.5. We screened known FBXW7 targets for changes in the lungs of the Fbxw7(R482Q/+) mice and found Tgif1 and Klf5 to be up-regulated. Fbxw7(R482Q) alleles are not functionally equivalent to heterozygous or homozygous null alleles, and we propose that they are selected in tumourigenesis because they cause a selective or partial loss of FBXW7 function.


Asunto(s)
Proteínas F-Box/genética , Pulmón/anomalías , Neoplasias/genética , Mutación Puntual , Ubiquitina-Proteína Ligasas/genética , Anomalías Múltiples/genética , Alelos , Secuencia de Aminoácidos , Animales , Arginina/análisis , Proteínas de Ciclo Celular/genética , Modelos Animales de Enfermedad , Proteína 7 que Contiene Repeticiones F-Box-WD , Humanos , Pulmón/embriología , Ratones , Datos de Secuencia Molecular , Proteínas de Neoplasias/genética , Alveolos Pulmonares/patología , Alineación de Secuencia , Factor de Crecimiento Transformador beta/fisiología
15.
Nat Commun ; 13(1): 7551, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36477656

RESUMEN

The pro-tumourigenic role of epithelial TGFß signalling in colorectal cancer (CRC) is controversial. Here, we identify a cohort of born to be bad early-stage (T1) colorectal tumours, with aggressive features and a propensity to disseminate early, that are characterised by high epithelial cell-intrinsic TGFß signalling. In the presence of concurrent Apc and Kras mutations, activation of epithelial TGFß signalling rampantly accelerates tumourigenesis and share transcriptional signatures with those of the born to be bad T1 human tumours and predicts recurrence in stage II CRC. Mechanistically, epithelial TGFß signalling induces a growth-promoting EGFR-signalling module that synergises with mutant APC and KRAS to drive MAPK signalling that re-sensitise tumour cells to MEK and/or EGFR inhibitors. Together, we identify epithelial TGFß signalling both as a determinant of early dissemination and a potential therapeutic vulnerability of CRC's with born to be bad traits.


Asunto(s)
Apoptosis , Factor de Crecimiento Transformador beta , Humanos , Apoptosis/genética
16.
Cell Stem Cell ; 29(8): 1213-1228.e8, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931031

RESUMEN

Intestinal homeostasis is underpinned by LGR5+ve crypt-base columnar stem cells (CBCs), but following injury, dedifferentiation results in the emergence of LGR5-ve regenerative stem cell populations (RSCs), characterized by fetal transcriptional profiles. Neoplasia hijacks regenerative signaling, so we assessed the distribution of CBCs and RSCs in mouse and human intestinal tumors. Using combined molecular-morphological analysis, we demonstrate variable expression of stem cell markers across a range of lesions. The degree of CBC-RSC admixture was associated with both epithelial mutation and microenvironmental signaling disruption and could be mapped across disease molecular subtypes. The CBC-RSC equilibrium was adaptive, with a dynamic response to acute selective pressure, and adaptability was associated with chemoresistance. We propose a fitness landscape model where individual tumors have equilibrated stem cell population distributions along a CBC-RSC phenotypic axis. Cellular plasticity is represented by position shift along this axis and is influenced by cell-intrinsic, extrinsic, and therapeutic selective pressures.


Asunto(s)
Neoplasias Colorrectales , Mucosa Intestinal , Animales , Neoplasias Colorrectales/patología , Homeostasis/fisiología , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Ratones , Células Madre Neoplásicas/patología , Receptores Acoplados a Proteínas G/metabolismo
17.
Gastroenterology ; 139(3): 929-41, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20638938

RESUMEN

BACKGROUND & AIMS: The E3 ubiquitin ligase F-box and WD repeat domain-containing 7 (Fbw7) degrades several proto-oncogenes including c-Myc, cyclinE, Notch1, and c-Jun. Fbw7 is the fourth most frequently mutated gene in human colorectal carcinomas and has recently been described as a poor prognosis marker in human colorectal carcinoma; however, the molecular mechanism underlying fbw7 mutations in intestinal tumor suppression is unclear. METHODS: To address the role of fbw7 in intestinal homeostasis and tumorigenesis, we generated conditional knock-out mice lacking fbw7 in the intestine and evaluated the effect of fbw7 absence in normal intestinal homeostasis and in adenomatous polyposis coli-mediated tumorigenesis. In parallel, we analyzed a cohort of human tumors bearing mutations in fbw7. RESULTS: Fbw7 was found to be highly expressed in the transit-amplifying progenitor cell compartment, and its deletion resulted in impaired goblet cell differentiation and accumulation of highly proliferating progenitor cells. This function of Fbw7 was mirrored during tumor formation because absence of Fbw7 increased proliferation and decreased differentiation of tumors triggered by aberrant Wnt signalling. Fbw7 exhibited haploinsufficiency for intestinal tumor suppression. Biallelic fbw7 inactivation increased cellular proliferation in physiologic and pathologic conditions in a c-Jun-dependent manner. Increased Notch activity was also observed in human tumors carrying heterozygous fbw7 mutations, suggesting that fbw7 haploinsufficiency for antagonizing Notch activity is conserved between human and murine cancers. CONCLUSIONS: Fbw7 regulates intestinal biology and tumorigenesis by controlling the abundance of different substrates in a dose-dependent fashion, providing a molecular explanation for the heterozygous mutations of fbw7 observed in human colorectal carcinoma.


Asunto(s)
Carcinoma/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula , Neoplasias Colorrectales/metabolismo , Proteínas F-Box/metabolismo , Mucosa Intestinal/metabolismo , Células Madre/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Poliposis Adenomatosa del Colon/metabolismo , Poliposis Adenomatosa del Colon/patología , Animales , Carcinoma/genética , Carcinoma/patología , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proteínas F-Box/genética , Proteína 7 que Contiene Repeticiones F-Box-WD , Genes APC , Haplotipos , Heterocigoto , Humanos , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Mutación , Proteínas Proto-Oncogénicas c-jun/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Células Madre/patología , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Proteínas Wnt/metabolismo
18.
Gut ; 59(12): 1680-6, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20926645

RESUMEN

BACKGROUND AND AIMS: Adenomatous polyposis coli (APC) is a tumour suppressor gene mutated in the germline of patients with familial adenomatous polyposis (FAP) and somatically in most colorectal cancers. APC mutations impair ß-catenin degradation, resulting in increased Wnt signalling. The most frequent APC mutation is a codon 1309 truncation that is associated with severe FAP. A previous study compared two mouse models of intestinal tumorigenesis, Apc(R850X) (Min) and Apc(1322T) (1322T), the latter a model of human codon 1309 changes. 1322T mice had more severe polyposis but, surprisingly, these tumours had lower levels of nuclear ß-catenin than Min tumours. The consequences of these different ß-catenin levels were investigated. METHODS: Enterocytes were isolated from 1322T and Min tumours by microdissection and gene expression profiling was performed. Differentially expressed Wnt targets and other stem cell markers were validated using quantitative PCR, in situ hybridisation and immunohistochemistry. RESULTS: As expected, lower nuclear ß-catenin levels in 1322T lesions were associated with generally lower levels of Wnt target expression. However, expression of the Wnt target and stem cell marker Lgr5 was significantly higher in 1322T tumours than in Min tumours. Other stem cell markers (Musashi1, Bmi1 and the Wnt target Cd44) were also at higher levels in 1322T tumours. In addition, expression of the Bmp antagonist Gremlin1 was higher in 1322T tumours, together with lower Bmp2 and Bmp4 expression. CONCLUSIONS: The severe phenotype caused by truncation of Apc at codon 1322 is associated with an increased number of stem cells. Thus, a submaximal level of Wnt signalling favours the stem cell phenotype and this may promote tumorigenesis. A level of Wnt signalling exists that is too high for optimal tumour growth.


Asunto(s)
Poliposis Adenomatosa del Colon/metabolismo , Genes APC , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/metabolismo , Poliposis Adenomatosa del Colon/genética , Animales , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Microdisección/métodos , Proteínas de Neoplasias/metabolismo , Transducción de Señal/fisiología , Proteínas Wnt/genética
19.
Sci Rep ; 9(1): 13463, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31530880

RESUMEN

Expression of the mismatch repair gene MutL homolog 1 (MLH1) is silenced in a clinically important subgroup of sporadic colorectal cancers. These cancers exhibit hypermutability with microsatellite instability (MSI) and differ from microsatellite-stable (MSS) colorectal cancers in both prognosis and response to therapies. Loss of MLH1 is usually due to epigenetic silencing with associated promoter methylation; coding somatic mutations rarely occur. Here we use the presence of a colorectal cancer (CRC) risk variant (rs1800734) within the MLH1 promoter to investigate the poorly understood mechanisms of MLH1 promoter methylation and loss of expression. We confirm the association of rs1800734 with MSI+ but not MSS cancer risk in our own data and by meta-analysis. Using sensitive allele-specific detection methods, we demonstrate that MLH1 is the target gene for rs1800734 mediated cancer risk. In normal colon tissue, small allele-specific differences exist only in MLH1 promoter methylation, but not gene expression. In contrast, allele-specific differences in both MLH1 methylation and expression are present in MSI+ cancers. We show that MLH1 transcriptional repression is dependent on DNA methylation and can be reversed by a methylation inhibitor. The rs1800734 allele influences the rate of methylation loss and amount of re-expression. The transcription factor TFAP4 binds to the rs1800734 region but with much weaker binding to the risk than the protective allele. TFAP4 binding is absent on both alleles when promoter methylation is present. Thus we propose that TFAP4 binding shields the protective rs1800734 allele of the MLH1 promoter from BRAF induced DNA methylation more effectively than the risk allele.


Asunto(s)
Neoplasias Colorrectales/genética , Proteínas de Unión al ADN/metabolismo , Homólogo 1 de la Proteína MutL/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Alelos , Estudios de Casos y Controles , Islas de CpG , Metilación de ADN , Proteínas de Unión al ADN/genética , Bases de Datos Factuales , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Inestabilidad de Microsatélites , Homólogo 1 de la Proteína MutL/metabolismo , ARN Mensajero/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA