RESUMEN
Selective functionalization at the meta position of arenes remains a significant challenge. In this work, we demonstrate that a single anionic bipyridine ligand bearing a remote sulfonate group enables selective iridium-catalyzed borylation of a range of common amine-containing aromatic molecules at the arene meta position. We propose that this selectivity is the result of a key hydrogen bonding interaction between the substrate and catalyst. The scope of this meta-selective borylation is demonstrated on amides derived from benzylamines, phenethylamines and phenylpropylamines; amine-containing building blocks of great utility in many applications.
RESUMEN
The use of noncovalent interactions to direct transition-metal catalysis is a potentially powerful yet relatively underexplored strategy, with most investigations thus far focusing on using hydrogen bonds as the controlling element. We have developed an ion pair-directed approach to controlling regioselectivity in the iridium-catalyzed borylation of two classes of aromatic quaternary ammonium salts, leading to versatile meta-borylated products. By examining a range of substituted substrates, this provides complex, functionalized aromatic scaffolds amenable to rapid diversification and more broadly demonstrates the viability of ion-pairing for control of regiochemistry in transition-metal catalysis.
RESUMEN
The search for new scaffolds to complement current HTS and fragment libraries is an active area of research. The development of novel strategies to synthesise compounds with 3D character in order to expand the diversity of a fragment library was explored. A range of substituted bicyclo[2,2,1]spirooxindoles were synthesised using a Diels-Alder [4+2] cycloaddition reaction. Both diastereoisomers were isolated from the reactions and these 3D fragment scaffolds were screened against the cytochrome P450 enzyme CYP121 from Mycobacterium tuberculosis. A number of hits were identified to bind to CYP121 and were shown to exhibit Type I binding interactions with the heme group.
Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Indoles/farmacología , Mycobacterium tuberculosis/enzimología , Compuestos de Espiro/farmacología , Inhibidores Enzimáticos del Citocromo P-450/síntesis química , Inhibidores Enzimáticos del Citocromo P-450/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Oxindoles , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Relación Estructura-ActividadRESUMEN
Artificial metalloenzymes (ArMs) result from the incorporation of an abiotic metal cofactor within a protein scaffold. From the earliest techniques of transition metals adsorbed on silk fibers, the field of ArMs has expanded dramatically over the past 60 years to encompass a range of reaction classes and inspired approaches: Assembly of the ArMs has taken multiple forms with both covalent and supramolecular anchoring strategies, while the scaffolds have been intuitively selected and evolved, repurposed, or designed in silico. Herein, we discuss some of the most prominent recent examples of ArMs to highlight the challenges and opportunities presented by the field.
RESUMEN
Basic heteroarenes are a ubiquitous feature of pharmaceuticals and bioactive molecules, and Minisci-type additions of radical nucleophiles are a leading method for their elaboration. Despite many Minisci-type protocols that result in the formation of stereocenters, exerting control over the absolute stereochemistry at these centers remains an unmet challenge. We report a process for addition of prochiral radicals, generated from amino acid derivatives, to pyridines and quinolines. Our method offers excellent control of both enantioselectivity and regioselectivity. An enantiopure chiral Brønsted acid catalyst serves both to activate the substrate and induce asymmetry, while an iridium photocatalyst mediates the required electron transfer processes. We anticipate that this method will expedite access to enantioenriched small-molecule building blocks bearing versatile basic heterocycles.
RESUMEN
Asymmetric catalysis has been revolutionised by the realisation that attractive non-covalent interactions such as hydrogen bonds and ion pairs can act as powerful controllers of enantioselectivity when incorporated into appropriate small molecule chiral scaffolds. Given these tremendous advances it is surprising that there are still a relatively limited number of examples of non-covalent interactions being harnessed for control of regioselectivity or site-selectivity in catalysis, two other fundamental selectivity aspects facing the synthetic chemist. This perspective examines the progress that has been made in this area thus far using non-covalent interactions in conjunction with transition metal catalysis as well as in the context of purely organic catalysts. We hope this will highlight the great potential in this approach for designing selective catalytic reactions.
RESUMEN
The cyclo-dipeptide substrates of the essential M.â tuberculosis (Mtb) enzyme CYP121 were deconstructed into their component fragments and screened against the enzyme. A number of hits were identified, one of which exhibited an unexpected inhibitor-like binding mode. The inhibitory pharmacophore was elucidated, and fragment binding affinity was rapidly improved by synthetic elaboration guided by the structures of CYP121 substrates. The resulting inhibitors have low micromolar affinity, good predicted physicochemical properties and selectivity for CYP121 over other Mtb P450s. Spectroscopic characterisation of the inhibitors' binding mode provides insight into the effect of weak nitrogen-donor ligands on the P450 heme, an improved understanding of factors governing CYP121-ligand recognition and speculation into the biological role of the enzyme for Mtb.