Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Arch Biochem Biophys ; 708: 108937, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34058150

RESUMEN

We investigated the correspondence between drug metabolism routes and the composition of the P450 ensemble in human liver microsomes (HLM). As a probe, we used Coumarin 152 (C152), a fluorogenic substrate metabolized by multiple P450 species. Studying the substrate-saturation profiles (SSP) in seven pooled HLM preparations, we sought to correlate them with the P450 pool's composition characterized by targeted proteomics. This analysis, complemented with the assays with specific inhibitors of CYP3A4 and CYP2C19, the primary C152 metabolizers, demonstrated a significant contrast between different HLM samples. To unveil the source of these differences, we implemented Principal Component Analysis (PCA) of the SSP series obtained with HLM samples with a known composition of the P450 pool. Our analysis revealed that the parameters of C152 metabolism are primarily determined by the content of CYP2A6, CYP2B6, CYP2C8, CYP2E1, and CYP3A5 of those only CYP2B6 and CYP3A5 can metabolize C152. To validate this finding, we studied the effect of enriching HLM with CYP2A6, CYP2E1, and CYP3A5. The incorporation of CYP3A5 into HLM decreases the rate of C152 metabolism while increasing the role of CYP2B6 in its turnover. In contrast, incorporation of CYP2A6 and CYP2E1 reroutes the C152 demethylation towards some P450 enzyme with a moderate affinity to the substrate, most likely CYP3A4. Our results reveal a sharp non-additivity of the individual P450 properties and suggest a pivotal role of P450-P450 interactions in determining drug metabolism routes. This study demonstrates the high potential of our new PCA-based approach in unveiling functional interrelationships between different P450 species.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Análisis de Componente Principal , Proteómica , Animales , Cinética , Unión Proteica
2.
Arch Biochem Biophys ; 698: 108677, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33197431

RESUMEN

We investigate the effect of the alcohol-induced increase in the content of CYP2E1 in human liver microsomes (HLM) on the function of CYP3A4. Membrane incorporation of the purified CYP2E1 into HLM considerably increases the rate of metabolism of 7-benzyloxyquinoline (BQ) and attenuates the homotropic cooperativity observed with this CYP3A4-specific substrate. It also eliminates the activating effect of α-naphthoflavone (ANF) seen in some HLM samples. To probe the physiological relevance of these effects, we compared three pooled preparations of HLM from normal donors (HLM-N) with a pooled preparation from ten heavy alcohol consumers (HLM-A). The composition of the P450 pool in all samples was characterized by the mass-spectrometric determination of 11 cytochrome P450 species. The fractional content of CYP2E1 in HLM-A was from 2.0 to 3.4 times higher than in HLM-N. In contrast, the content of CYP3A4 in HLM-A was the lowest among all samples. Despite that, HLM-A exhibited a much higher metabolism rate and a lower homotropic cooperativity with BQ, similar to CYP2E1-enriched HLM-N. To substantiate the involvement of interactions between CYP2E1 and CYP3A4 in these effects, we probed hetero-association of these proteins in CYP3A4-containing Supersomes™ with a technique employing CYP2E1 labeled with BODIPY-618 maleimide. These experiments evinced the interactions between the two enzymes and revealed an inhibitory effect of ANF on their association. Our results demonstrate that the functional properties of CYP3A4 are fundamentally dependent on the composition of the cytochrome P450 ensemble and suggest a possible impact of chronic alcohol exposure on the pharmacokinetics of drugs metabolized by CYP3A4.


Asunto(s)
Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Etanol/toxicidad , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Secuencia de Aminoácidos , Amitriptilina/metabolismo , Benzoflavonas/farmacología , Citocromo P-450 CYP2E1/análisis , Citocromo P-450 CYP3A/análisis , Activadores de Enzimas/farmacología , Femenino , Humanos , Ivermectina/metabolismo , Masculino , Midazolam/metabolismo , Nitrofenoles/metabolismo , Quinolinas/metabolismo
3.
Xenobiotica ; 50(12): 1393-1405, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32662751

RESUMEN

We closely characterized 7-Dimethylamino-4-trifluromethylcoumarin (Coumarin 152, C152), a substrate metabolized by multiple P450 species, to establish a new fluorogenic probe for the studies of functional integration in the cytochrome P450 ensemble. Scanning fluorescence spectroscopy and LC/MS-MS were used to characterize the products of N-demethylation of C152 and optimize their fluorometric detection. The metabolism of C152 by the individual P450 species was characterized using the microsomes containing cDNA-expressed enzymes. C152 metabolism in human liver microsomes (HLM) was studied in a preparation with quantified content of eleven P450 species. C152 is metabolized by CYP2B6, CYP3A4, CYP3A5, CYP2C19, CYP1A2, CYP2C9, and CYP2C8 listed in the order of decreasing turnover. The affinities exhibited by CYP3A5, CYP2C9, and CYP2C8 were lower than those characteristic to the other enzymes. The presumption of additivity suggests the participation of CYP3A4, CYP2B6, and CYP2C19 to be 84, 8, and 0.2%, respectively. Contrary to this prediction, inhibitory analysis identified CYP2C19 as the principal C152-metabolizing enzyme. We thoroughly characterize C152 for the studies of drug metabolism in HLM and demonstrate the limitations of the proportional projection approach by providing an example, where the involvement of individual P450 species cannot be predicted from their content.


Asunto(s)
Cumarinas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Tasa de Depuración Metabólica/fisiología , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP3A/metabolismo , Humanos
4.
Biochem J ; 476(23): 3661-3685, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31750875

RESUMEN

In this study, we investigate the ability of ethanol-inducible CYP2E1 to interact with other cytochrome P450 species and affect the metabolism of their substrates. As a model system, we used CYP2E1-enriched human liver microsomes (HLM) obtained by the incorporation of purified CYP2E1. Using a technique based on homo-FRET in oligomers of CYP2E1 labeled with BODIPY 577/618 maleimide we demonstrated that the interactions of CYP2E1 with HLM result in the formation of its mixed oligomers with other P450 species present in the microsomal membrane. Incorporation of CYP2E1 results in a multifold increase in the rate of metabolism of CYP2E1-specific substrates p-Nitrophenol and Chlorzaxozone. The rate of their oxidation remains proportional to the amount of incorporated CYP2E1 up to the content of 0.3-0.4 nmol/mg protein (or ∼50% CYP2E1 in the P450 pool). The incorporated CYP2E1 becomes a fully functional member of the P450 ensemble and do not exhibit any detectable functional differences with the endogenous CYP2E1. Enrichment of HLM with CYP2E1 results in pronounced changes in the metabolism of 7-ethoxy-4-cyanocoumarin (CEC), the substrate of CYP2C19 and CYP1A2 suggesting an increase in the involvement of the latter in its metabolism. This effect goes together with an augmentation of the rate of dealkylation of CYP1A2-specific substrate 7-ethoxyresorufin. Furthermore, probing the interactions of CYP2E1 with model microsomes containing individual P450 enzymes we found that CYP2E1 efficiently interacts with CYP1A2, but lacks any ability to form complexes with CYP2C19. This finding goes inline with CYP2E1-induced redirection of the main route of CEC metabolism from CYP2C19 to CYP1A2.


Asunto(s)
Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Microsomas Hepáticos/metabolismo , Membrana Celular/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Remoción de Radical Alquila , Escherichia coli/metabolismo , Femenino , Humanos , Hígado/citología , Masculino , Espectrometría de Masas , NADPH-Ferrihemoproteína Reductasa/metabolismo , Oxazinas/metabolismo , Oxidación-Reducción , Espectrometría de Fluorescencia , Especificidad por Sustrato , Donantes de Tejidos
5.
Biochem J ; 474(20): 3523-3542, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28904078

RESUMEN

Functional cross-talk among human drug-metabolizing cytochrome P450 through their association is a topic of emerging importance. Here, we studied the interactions of human CYP2D6, a major metabolizer of psychoactive drugs, with one of the most prevalent human P450 enzymes, ethanol-inducible CYP2E1. Detection of P450-P450 interactions was accomplished through luminescence resonance energy transfer between labeled proteins incorporated into human liver microsomes and the microsomes of insect cells containing NADPH-cytochrome P450 reductase. The potential of CYP2D6 to form oligomers in the microsomal membrane is among the highest observed with human cytochrome P450 studied up to date. We also observed the formation of heteromeric complexes of CYP2D6 with CYP2E1 and CYP3A4, and found a significant modulation of these interactions by 3,4-methylenedioxymethylamphetamine, a widespread drug of abuse metabolized by CYP2D6. Our results demonstrate an ample alteration of the catalytic properties of CYP2D6 and CYP2E1 caused by their association. In particular, we demonstrated that preincubation of microsomes containing co-incorporated CYP2D6 and CYP2E1 with CYP2D6-specific substrates resulted in considerable time-dependent activation of CYP2D6, which presumably occurs via a slow substrate-induced reorganization of CYP2E1-CYP2D6 hetero-oligomers. Furthermore, we demonstrated that the formation of heteromeric complexes between CYP2E1 and CYP2D6 affects the stoichiometry of futile cycling and substrate oxidation by CYP2D6 by means of decreasing the electron leakage through the peroxide-generating pathways. Our results further emphasize the role of P450-P450 interactions in regulatory cross-talk in human drug-metabolizing ensemble and suggest a role of interactions of CYP2E1 with CYP2D6 in pharmacologically important instances of alcohol-drug interactions.


Asunto(s)
Citocromo P-450 CYP2D6/química , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/química , Citocromo P-450 CYP2E1/metabolismo , Animales , Bovinos , Humanos , Microsomas Hepáticos/metabolismo , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Ratas
6.
Biophys J ; 110(7): 1485-1498, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27074675

RESUMEN

We used high hydrostatic pressure as a tool for exploring the conformational landscape of human cytochrome P450 3A4 (CYP3A4) by electron paramagnetic resonance and fluorescence spectroscopy. Site-directed incorporation of a luminescence resonance energy transfer donor-acceptor pair allowed us to identify a pressure-dependent equilibrium between two states of the enzyme, where an increase in pressure increased the spatial separation between the two distantly located fluorophores. This transition is characterized by volume change (ΔV°) and P1/2 values of -36.8 ± 5.0 mL/mol and 1.45 ± 0.33 kbar, respectively, which corresponds to a Keq° of 0.13 ± 0.06, so that only 15% of the enzyme adopts the pressure-promoted conformation at ambient pressure. This pressure-promoted displacement of the equilibrium is eliminated by the addition of testosterone, an allosteric activator. Using site-directed spin labeling, we demonstrated that the pressure- and testosterone-sensitive transition is also revealed by pressure-induced changes in the electron paramagnetic resonance spectra of a nitroxide side chain placed at position 85 or 409 of the enzyme. Furthermore, we observed a pressure-induced displacement of the emission maxima of a solvatochromic fluorophore (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) coumarin) placed at the same positions, which suggests a relocation to a more polar environment. Taken together, the results reveal an effector-dependent conformational equilibrium between open and closed states of CYP3A4 that involves a pronounced change at the interface between the region of α-helices A/A' and the meander loop of the enzyme, where residues 85 and 409 are located. Our study demonstrates the high potential of pressure-perturbation strategies for studying protein conformational landscapes.


Asunto(s)
Citocromo P-450 CYP3A/química , Espectroscopía de Resonancia por Spin del Electrón , Presión , Citocromo P-450 CYP3A/genética , Colorantes Fluorescentes/química , Humanos , Modelos Moleculares , Mutación , Conformación Proteica
7.
J Biol Chem ; 290(6): 3850-64, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25533469

RESUMEN

The body of evidence of physiologically relevant P450-P450 interactions in microsomal membranes continues to grow. Here we probe oligomerization of human CYP3A4, CYP3A5, and CYP2E1 in microsomal membranes. Using a technique based on luminescence resonance energy transfer, we demonstrate that all three proteins are subject to a concentration-dependent equilibrium between the monomeric and oligomeric states. We also observed the formation of mixed oligomers in CYP3A4/CYP3A5, CYP3A4/CYP2E1, and CYP3A5/CYP2E1 pairs and demonstrated that the association of either CYP3A4 or CYP3A5 with CYP2E1 causes activation of the latter enzyme. Earlier we hypothesized that the intersubunit interface in CYP3A4 oligomers is similar to that observed in the crystallographic dimers of some microsomal drug-metabolizing cytochromes P450 (Davydov, D. R., Davydova, N. Y., Sineva, E. V., Kufareva, I., and Halpert, J. R. (2013) Pivotal role of P450-P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone. Biochem. J. 453, 219-230). Here we report the results of intermolecular cross-linking of CYP3A4 oligomers with thiol-reactive bifunctional reagents as well as the luminescence resonance energy transfer measurements of interprobe distances in the oligomers of labeled CYP3A4 single-cysteine mutants. The results provide compelling support for the physiological relevance of the dimer-specific peripheral ligand-binding site observed in certain CYP3A4 structures. According to our interpretation, these results reveal an important general mechanism that regulates the activity and substrate specificity of the cytochrome P450 ensemble through interactions between multiple P450 species. As a result of P450-P450 cross-talk, the catalytic properties of the cytochrome P450 ensemble cannot be predicted by simple summation of the properties of the individual P450 species.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas/enzimología , Multimerización de Proteína , Secuencia de Aminoácidos , Sistema Enzimático del Citocromo P-450/química , Humanos , Datos de Secuencia Molecular , Unión Proteica
8.
Biochem J ; 453(2): 219-30, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23651100

RESUMEN

We investigated the relationship between oligomerization of CYP3A4 (cytochrome P450 3A4) and its response to ANF (α-naphthoflavone), a prototypical heterotropic activator. The addition of ANF resulted in over a 2-fold increase in the rate of CYP3A4-dependent debenzylation of 7-BFC [7-benzyloxy-4-(trifluoromethyl)coumarin] in HLM (human liver microsomes), but failed to produce activation in BD Supersomes or Baculosomes containing recombinant CYP3A4 and NADPH-CPR (cytochrome P450 reductase). However, incorporation of purified CYP3A4 into Supersomes containing only recombinant CPR reproduced the behaviour observed with HLM. The activation in this system was dependent on the surface density of the enzyme. Although no activation was detectable at an L/P (lipid/P450) ratio ≥750, it reached 225% at an L/P ratio of 140. To explore the relationship between this effect and CYP3A4 oligomerization, we probed P450-P450 interactions with a new technique that employs LRET (luminescence resonance energy transfer). The amplitude of LRET in mixed oligomers of the haem protein labelled with donor and acceptor fluorophores exhibited a sigmoidal dependence on the surface density of CYP3A4 in Supersomes™. The addition of ANF eliminated this sigmoidal character and increased the degree of oligomerization at low enzyme concentrations. Therefore the mechanisms of CYP3A4 allostery with ANF involve effector-dependent modulation of P450-P450 interactions.


Asunto(s)
Benzoflavonas/metabolismo , Citocromo P-450 CYP3A/metabolismo , Regulación Alostérica , Biopolímeros , Humanos , Microsomas , Unión Proteica
9.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798409

RESUMEN

We examined the effect of alcohol consumption and smoking on the abundance of drug-metabolizing enzymes and transporters (DMET) in human liver microsomes (HLM) isolated from liver tissues of 94 donors. Global proteomics analysis was performed and DMET protein levels were analyzed in relation to alcohol consumption levels, smoking history, and sex using non-parametric tests (p-value ≤ 0.05; cutoff of 1.25-fold change, FC). The examination of the alcohol-induced changes was further enforced by correlational analysis, where we used arbitrary alcohol consumption grade (ACG) scaling from 0 to 4 to establish a set of protein markers. We elaborated a provisional index of alcohol exposure (PIAE) based on a combination of relative abundances of four proteins (ER chaperone HSPA5, protein disulfide isomerases PDIA3 and P4HB, and cocaine esterase CES2) best correlating with ACG. The PIAE index was then used to find its correlations with the abundances of DMET proteins. Our results demonstrate considerable alcohol-induced changes in composition of the pool of cytochrome P450 enzymes in HLM. We observed significantly increased abundances of CYP2E1, CYP2B6, CYP2J2, and NADPH-cytochrome P450 reductase. In contrast, CYP1A2, CYP2C8, CYP2C9, CYP4A11, and cytochrome b5 protein levels were downregulated. Significant alteration in abundances of UDP-glucuronosyltransferase (UGT) were also detected, comprising of elevated UGT1A6, UGT1A9, and UGT2A1, and reduced UGT1A3, UGT1A4, UGT2B7, UGT2B10, and UGT2B15 levels. Important alcohol-induced changes were also observed in the expression of non-CYP and non-UGT DMET. Additionally, tobacco smoke was associated with elevated CYP1A2, UGT1A6, UGT2A1, and UGT2B4 and decreased FMO3, FMO4, and FMO5 levels.

10.
J Biol Chem ; 287(9): 6797-809, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22194603

RESUMEN

The mechanisms of ligand binding and allostery in the major human drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4) were explored with fluorescence resonance energy transfer (FRET) using a laser dye, fluorol-7GA (F7GA), as a model substrate. Incorporation into the enzyme of a thiol-reactive FRET probe, pyrene iodoacetamide, allowed us to monitor the binding by FRET from the pyrene donor to the F7GA acceptor. Cooperativity of the interactions detected by FRET indicates that the enzyme possesses at least two F7GA-binding sites that have different FRET efficiencies and are therefore widely separated. To probe spatial localization of these sites, we studied FRET in a series of mutants bearing pyrene iodoacetamide at different positions, and we measured the distances from each of the sites to the donor. Our results demonstrate the presence of a high affinity binding site at the enzyme periphery. Analysis of the set of measured distances complemented with molecular modeling and docking allowed us to pinpoint the most probable peripheral site. It is located in the vicinity of residues 217-220, similar to the position of the progesterone molecule bound at the distal surface of the CYP3A4 in a prior x-ray crystal structure. Peripheral binding of F7GA causes a substantial spin shift and serves as a prerequisite for the binding in the active site. This is the first indication of functionally important ligand binding outside of the active site in cytochromes P450. The findings strongly suggest that the mechanisms of CYP3A4 cooperativity involve a conformational transition triggered by an allosteric ligand.


Asunto(s)
Sitios de Unión/fisiología , Citocromo P-450 CYP3A/química , Transferencia Resonante de Energía de Fluorescencia , Isoquinolinas/química , Modelos Químicos , Regulación Alostérica , Dominio Catalítico , Cisteína/genética , Citocromo P-450 CYP3A/genética , Humanos , Ligandos , Mutagénesis , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Volumetría
11.
Biotechnol Appl Biochem ; 60(1): 30-40, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23586990

RESUMEN

We have explored the adaptation of the cytochromes P450 (P450) of deep-sea bacteria to high hydrostatic pressures. Strict conservation of the protein fold and functional importance of protein-bound water make P450 a unique subject for the studies of high-pressure adaptation. Earlier, we expressed and purified a fatty-acid binding P450 from the deep-sea bacteria Photobacterium profundum SS9 (CYP261C1). Here, we report purification and initial characterization of its mesophilic ortholog from the shallow-water P. profundum 3TCK (CYP261C2), as well as another piezophilic enzyme, CYP261D1, from deep-sea Moritella sp. PE36. Comparison of the three enzymes revealed a striking peculiarity of the piezophilic enzymes. Both CYP261C1 and CYP261D1 possess an apparent pressure-induced conformational toggle actuated at the pressures commensurate with the physiological pressure of habitation of the host bacteria. Furthermore, in contrast to CYP261C2, the piezophilic CYP261 enzymes may be chromatographically separated into two fractions with different properties, and different thermodynamic parameters of spin equilibrium in particular. According to our concept, the changes in the energy landscape that evolved in pressure-tolerant enzymes must stabilize the less-hydrated, closed conformers, which may be transient in the catalytic mechanisms of nonpiezophilic enzymes. The studies of enzymes of piezophiles should help unravel the mechanisms that control water access during the catalytic cycle.


Asunto(s)
Organismos Acuáticos/enzimología , Sistema Enzimático del Citocromo P-450/química , Moritella/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Conformación Proteica
12.
Biology (Basel) ; 12(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37626940

RESUMEN

In a search for a reliable, inexpensive, and versatile technique for high-throughput kinetic assays of drug metabolism, we elected to rehire an old-school approach based on the determination of formaldehyde (FA) formed in cytochrome P450-dependent demethylation reactions. After evaluating several fluorometric techniques for FA detection, we chose the method based on the Hantzsch reaction with acetoacetanilide as the most sensitive, robust, and adaptable to high-throughput implementation. Here we provide a detailed protocol for using our new technique for automatized assays of cytochrome P450-dependent drug demethylations and discuss its applicability for high-throughput scanning of drug metabolism pathways in the human liver. To probe our method further, we applied it to re-evaluating the pathways of metabolism of ketamine, a dissociative anesthetic and potent antidepressant increasingly used in the treatment of alcohol withdrawal syndrome. Probing the kinetic parameters of ketamine demethylation by ten major cytochrome P450 (CYP) enzymes, we demonstrate that in addition to CYP2B6 and CYP3A enzymes, which were initially recognized as the primary metabolizers of ketamine, an important role is also played by CYP2C19 and CYP2D6. At the same time, the involvement of CYP2C9 suggested in the previous reports was deemed insignificant.

13.
Biochim Biophys Acta ; 1797(3): 378-90, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20026040

RESUMEN

We studied the kinetics of NADPH-dependent reduction of human CYP3A4 incorporated into Nanodiscs (CYP3A4-ND) and proteoliposomes in order to probe the effect of P450 oligomerization on its reduction. The flavin domain of cytochrome P450-BM3 (BMR) was used as a model electron donor partner. Unlike CYP3A4 oligomers, where only 50% of the enzyme was shown to be reducible by BMR, CYP3A4-ND could be reduced almost completely. High reducibility was also observed in proteoliposomes with a high lipid-to-protein ratio (L/P=910), where the oligomerization equilibrium is displaced towards monomers. In contrast, the reducibililty in proteoliposomes with L/P=76 did not exceed 55+/-6%. The effect of the surface density of CYP3A4 in proteoliposomes on the oligomerization equilibrium was confirmed with a FRET-based assay employing a cysteine-depleted mutant labeled on Cys-468 with BODIPY iodoacetamide. These results confirm a pivotal role of CYP3A4 oligomerization in its functional heterogeneity. Furthermore, the investigation of the initial phase of the kinetics of CYP3A4 reduction showed that the addition of NADPH causes a rapid low-to-high-spin transition in the CYP3A4-BMR complex, which is followed by a partial slower reversal. This observation reveals a mechanism whereby the CYP3A4 spin equilibrium is modulated by the redox state of the bound flavoprotein.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Flavinas/metabolismo , NADPH-Ferrihemoproteína Reductasa/química , NADPH-Ferrihemoproteína Reductasa/metabolismo , Compuestos de Boro , Citocromo P-450 CYP3A/genética , Transporte de Electrón , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Humanos , Cinética , Mutación/genética , NADP/metabolismo , Nanotecnología , Oxidación-Reducción , Proteolípidos/metabolismo , Especificidad por Sustrato
14.
Xenobiotica ; 41(4): 281-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21143007

RESUMEN

The basis of decreased cooperativity in substrate binding in the cytochrome P450 3A4 mutants F213W, F304W, and L211F/D214E was studied with fluorescence resonance energy transfer and absorbance spectroscopy. Although in the wild type enzyme, the absorbance changes reflecting the interactions with 1-pyrenebutanol exhibit a Hill coefficient (n(H)) around 1.7 (S(50) = 11.7 µM), the mutants showed no cooperativity (n(H) ≤ 1.1) with unchanged S(50) values. Contrary to the premise that the mutants lack one of the two binding sites, the mutants exhibited at least two substrate binding events. The high-affinity interaction is characterized by a dissociation constant (K(D)) ≤ 1.0 µM, whereas the K(D) of the second binding has the same magnitude as the S(50). Theoretical analysis of a two-step binding model suggests that n(H) values may vary from 1.1 to 2.2 depending on the amplitude of the spin shift caused by the first binding event. Alteration of cooperativity in the mutants is caused by a partial displacement of the "spin-shifting" step. Although in the wild type the spin shift occurs in the ternary complex only, the mutants exhibit some spin shift on binding of the first substrate molecule.


Asunto(s)
Citocromo P-450 CYP3A/genética , Proteínas Mutantes/genética , Factor Natriurético Atrial/metabolismo , Sitios de Unión , Bromocriptina/metabolismo , Citocromo P-450 CYP3A/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Proteínas Mutantes/metabolismo , Unión Proteica , Pirenos/metabolismo , Especificidad por Sustrato
15.
Biochemistry ; 47(43): 11348-59, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18831537

RESUMEN

To establish a direct method for monitoring substrate binding in cytochrome P450eryF applicable at elevated hydrostatic pressures, we introduce a laser dye Fluorol-7GA (F7GA) as a novel fluorescent ligand. The high intensity of fluorescence and the reasonable resolution of the excitation band from the absorbance bands of P450 allowed us to establish highly sensitive binding assays compatible with pressure perturbation. The interactions of F7GA with P450eryF cause an ample spin shift revealing cooperative binding ( S50 = 8.2 +/- 1.3 microM; n = 2.3 +/- 0.1). Fluorescence resonance energy transfer (FRET) experiments suggest the presence of at least two substrate binding sites with apparent K D values in the ranges of 0.1-0.3 and 6-9 microM. Similar to that observed earlier with CYP3A4, increasing hydrostatic pressure does not cause either a complete dissociation of the substrate complexes or a displacement of the spin equilibrium toward the low-spin state. Rather, increased pressure enhances the cooperativity of the F7GA-induced spin shift, so that the Hill coefficient approaches 3 at 2 kbar. Lifetime FRET experiments revealed an important increase in the affinity of the enzyme for F7GA at elevated pressures, suggesting that the binding of the ligand induces a conformational transition associated with an important increase in the level of protein hydration. This transition largely attenuates the solvent accessibility of the heme pocket and causes an unusual stability of the high-spin, substrate-bound enzyme at elevated pressures.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/metabolismo , Espectrometría de Fluorescencia , Sitio Alostérico , Proteínas Bacterianas , Citocromo P-450 CYP3A , Colorantes Fluorescentes/química , Presión Hidrostática , Isoquinolinas/química , Isoquinolinas/metabolismo , Cinética , Ligandos , Estructura Molecular , Especificidad por Sustrato , Volumetría
16.
Arch Biochem Biophys ; 471(2): 134-45, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18206979

RESUMEN

Glutathione (GSH) exerted a profound effect on the oxidation of 7-benzyloxy-4-(trifluoromethyl)coumarin (BFC) and 7-benzyloxyquinoline (BQ) by human liver microsomes as well as by CYP3A4-containing insect cell microsomes (Baculosomes). The cooperativity in O-debenzylation of both substrates is eliminated in the presence of 1-4mM GSH. Addition of GSH also increased the amplitude of the 1-PB induced spin shift with purified CYP3A4 and abolished the cooperativity of 1-PB or BFC binding. Changes in fluorescence of 6-bromoacetyl-2-dimethylaminonaphthalene attached to the cysteine-depleted mutant CYP3A4(C58,C64) suggest a GSH-induced conformational changes in proximity of alpha-helix A. Importantly, the K(S) value for formation of the GSH complex and the concentrations in which GSH decreases CYP3A4 cooperativity are consistent with the physiological concentrations of GSH in hepatocytes. Therefore, the allosteric effect of GSH on CYP3A4 may play an important role in regulation of microsomal monooxygenase activity in vivo.


Asunto(s)
Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Glutatión/farmacología , Microsomas Hepáticos/efectos de los fármacos , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Sitio Alostérico , Hidrocarburo de Aril Hidroxilasas/metabolismo , Sitios de Unión , Cumarinas/metabolismo , Cisteína/genética , Cisteína/metabolismo , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Cinética , Microsomas Hepáticos/enzimología , Mutación , Oxidación-Reducción , Estructura Secundaria de Proteína , Pirenos/metabolismo , Quinolinas/metabolismo , Espectrometría de Fluorescencia , Especificidad por Sustrato
17.
Biochem Pharmacol ; 156: 86-98, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30114388

RESUMEN

We investigate the mechanism of time-dependent inhibition (TDI) of human cytochrome P450 2D6 (CYP2D6) by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), one of the most widespread recreational drugs of abuse. In an effort to unravel the kinetic mechanism of the formation of metabolic inhibitory complex (MIC) of CYP2D6 with MDMA-derived carbene we carried out a series of spectrophotometric studies paralleled with registration of the kinetics of time-dependent inhibition (TDI) in CYP2D6-incorporated proteoliposomes. The high amplitude of spectral signal in this system allowed us to characterize the spectral properties of the formed MIC in details and obtain an accurate spectral signature of MIC formation. This information was then used in the studies with CYP2D6-containing microsomes of insect cells (CYP2D6 Supersomes™). Our results demonstrate that in both systems the formation of the ferrous carbene-derived MIC is relatively slow, reversible and is not associated with the accumulation of the ferric carbene intermediate, as takes place in the case of CYP3A4 and podophylotoxin. Furthermore, the limited amplitude of MIC formation suggests that only a fraction (∼50%) of spectrally detectable CYP2D6 in both proteoliposomes and Supersomes participates in the formation of MIC and is therefore involved in the MDMA metabolism. This observation reveals yet another example of a cytochrome P450 that exhibits persistent functional heterogeneity of its population in microsomal membranes. Our study provides a solid methodological background for further mechanistic studies of MIC formation in human liver microsomes and demonstrates that the potency and physiological relevance of MDMA-dependent TDI of CYP2D6 may be overestimated.


Asunto(s)
Inhibidores del Citocromo P-450 CYP2D6/farmacología , Citocromo P-450 CYP2D6/metabolismo , N-Metil-3,4-metilenodioxianfetamina/farmacología , Serotoninérgicos/farmacología , Dextrometorfano/metabolismo , Dextrometorfano/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Cinética , Estructura Molecular , N-Metil-3,4-metilenodioxianfetamina/química
18.
Biochemistry ; 46(1): 106-19, 2007 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-17198380

RESUMEN

Design of a partially cysteine-depleted C98S/C239S/C377S/C468A cytochrome P450 3A4 mutant designated CYP3A4(C58,C64) allowed site-directed incorporation of thiol-reactive fluorescent probes into alpha-helix A. The site of modification was identified as Cys-64 with the help of CYP3A4(C58) and CYP3A4(C64), each bearing only one accessible cysteine. Changes in the fluorescence of CYP3A4(C58,C64) labeled with 6-(bromoacetyl)-2-(dimethylamino)naphthalene (BADAN), 7-(diethylamino)-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM), or monobromobimane (mBBr) were used to study the interactions with bromocriptine (BCT), 1-pyrenebutanol (1-PB), testosterone (TST), and alpha-naphthoflavone (ANF). Of these substrates only ANF has a specific effect, causing a considerable decrease in fluorescence intensity of BADAN and CPM and increasing the fluorescence of mBBr. This ANF-binding event in the case of the BADAN-modified enzyme is characterized by an S50 of 18.2 +/- 0.7, compared with the value of 2.2 +/- 0.3 for the ANF-induced spin transition, thus revealing an additional low-affinity binding site. Studies of the effect of TST, 1-PB, and BCT on the interactions of ANF monitored by changes in fluorescence of CYP3A4(C58,C64)-BADAN or by the ANF-induced spin transition revealed no competition by these substrates. Investigation of the kinetics of fluorescence increase upon H2O2-dependent heme depletion suggests that labeled CYP3A4(C58,C64) is represented by two conformers, one of which has the fluorescence of the BADAN and CPM labels completely quenched, presumably by photoinduced electron transfer from the neighboring Trp-72 and/or Tyr-68 residues. The binding of ANF to the newly discovered binding site appears to affect the interactions of the label with the above residue(s), thus modulating the fraction of the fluorescent conformer.


Asunto(s)
Benzoflavonas/química , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Colorantes Fluorescentes/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , 2-Naftilamina/metabolismo , Sustitución de Aminoácidos , Benzoflavonas/metabolismo , Sitios de Unión , Cumarinas/química , Cumarinas/metabolismo , Cisteína/química , Cisteína/metabolismo , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/genética , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/metabolismo , Cinética , Modelos Moleculares , Especificidad por Sustrato , Factores de Tiempo
19.
Biophys J ; 89(1): 418-32, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15834000

RESUMEN

To elucidate the mechanisms of cooperativity of cytochrome P450eryF an SH-reactive fluorescent probe was introduced close to the substrate-binding site. Cys-154, the only accessible cysteine, was eliminated by site-directed mutagenesis, and a novel cysteine was substituted for Ser-93 in the B'/C loop. S93C, C154A, C154S, S93C/C154A, and S93C/S154C were characterized in terms of affinity for 1-pyrenebutanol (1-PB), cooperativity, and ionic-strength dependence of the 1-PB-induced spin shift. S93C/C154S retains the key functional properties of the wild-type, and modification by three different SH-reactive probes had little effect on the characteristics of the enzyme. The labeled proteins exhibited fluorescence resonance energy transfer from 1-PB to the label, which allowed us to resolve two substrate-binding events, and to determine the corresponding KD values (KD1 = 1.2 +/- 0.2 microM, KD2 = 9.4 +/- 0.8 microM). Using these values for analysis of the substrate-induced spin transition, we demonstrate that the interactions of P450eryF with 1-PB are consistent with a sequential binding mechanism, where substrate interactions at a higher-affinity site cause a conformational transition crucial for the binding of the second substrate molecule and subsequent spin shift. This transition is apparently associated with an important rearrangement of the system of salt links in the proximity of Cys-154.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Colorantes Fluorescentes/farmacología , Oxigenasas de Función Mixta/química , Saccharopolyspora/enzimología , Espectrometría de Fluorescencia/métodos , Sitio Alostérico , Proteínas Bacterianas , Sitios de Unión , Biofisica/métodos , Cristalografía por Rayos X , Cisteína/química , Cartilla de ADN/química , Relación Dosis-Respuesta a Droga , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Iones , Cinética , Modelos Químicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas/métodos , Estructura Secundaria de Proteína , Pirenos/química , Sales (Química)/farmacología , Serina/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA