RESUMEN
In the development of biotherapeutics, a thorough understanding of a molecule's product quality attributes (PQAs) and their effect on structure-function relationships and long-term stability is essential for ensuring the safety and efficacy of the product. First published in 2015, the multi-attribute method (MAM), based on LC-MS peptide mapping and automation principles, can be used to support biotherapeutic process and product development. The MAM provides simultaneous site-specific detection, identification, quantitation, and quality control monitoring of selected PQAs. In this article, a low-maintenance MAM-ready mass detector with a small footprint was evaluated for its ability to monitor PQAs on proteolytically digested proteins with high mass accuracy and precision. Optimized source parameters enable robust relative quantitation of attributes with high sensitivity and minimal in-source fragmentation. A combination of a built-in one-point mass calibration procedure prior to data acquisition and Scan-to-Scan on-the-fly mass correction allows monitoring of most peptides for at least 54 days with sub-1 ppm mass accuracies at high-resolution (180,000 at m/z 200). This enables the use of <3 ppm mass tolerances for peptide monitoring, supporting high method specificity and robustness. LC-MS based MAM data from this instrument compares well to data collected by earlier MAM systems and conventional HPLC profile-based drug substance release assays.
Asunto(s)
Espectrometría de Masas , Calibración , Péptidos/análisis , Péptidos/química , Cromatografía Liquida/métodosRESUMEN
The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Transducción de Señal/fisiología , Acilación , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Giberelinas/metabolismo , Mutación , N-Acetilglucosaminiltransferasas/genética , Unión ProteicaRESUMEN
The mediators of the DNA damage response (DDR) are highly phosphorylated by kinases that control cell proliferation, but little is known about the role of this regulation. Here we show that cell cycle phosphorylation of the prototypical DDR mediator Saccharomyces cerevisiae Rad9 depends on cyclin-dependent kinase (CDK) complexes. We find that a specific G2/M form of Cdc28 can phosphorylate in vitro the N-terminal region of Rad9 on nine consensus CDK phosphorylation sites. We show that the integrity of CDK consensus sites and the activity of Cdc28 are required for both the activation of the Chk1 checkpoint kinase and its interaction with Rad9. We have identified T125 and T143 as important residues in Rad9 for this Rad9/Chk1 interaction. Phosphorylation of T143 is the most important feature promoting Rad9/Chk1 interaction, while the much more abundant phosphorylation of the neighbouring T125 residue impedes the Rad9/Chk1 interaction. We suggest a novel model for Chk1 activation where Cdc28 regulates the constitutive interaction of Rad9 and Chk1. The Rad9/Chk1 complex is then recruited at sites of DNA damage where activation of Chk1 requires additional DDR-specific protein kinases.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/fisiología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Puntos de Control del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Activación Enzimática , Mutación , Fosforilación , Unión Proteica , Fase S/fisiología , Saccharomyces cerevisiae/citologíaRESUMEN
Emerin, a membrane component of nuclear "lamina" networks with lamins and barrier to autointegration factor (BAF), is highly O-GlcNAc-modified ("O-GlcNAcylated") in mammalian cells. Mass spectrometry analysis revealed eight sites of O-GlcNAcylation, including Ser-53, Ser-54, Ser-87, Ser-171, and Ser-173. Emerin O-GlcNAcylation was reduced ~50% by S53A or S54A mutation in vitro and in vivo. O-GlcNAcylation was reduced ~66% by the triple S52A/S53A/S54A mutant, and S173A reduced O-GlcNAcylation of the S52A/S53A/S54A mutant by ~30%, in vivo. We separated two populations of emerin, A-type lamins and BAF; one population solubilized easily, and the other required sonication and included histones and B-type lamins. Emerin and BAF associated only in histone- and lamin-B-containing fractions. The S173D mutation specifically and selectively reduced GFP-emerin association with BAF by 58% and also increased GFP-emerin hyper-phosphorylation. We conclude that ß-N-acetylglucosaminyltransferase, an essential enzyme, controls two regions in emerin. The first region, defined by residues Ser-53 and Ser-54, flanks the LEM domain. O-GlcNAc modification at Ser-173, in the second region, is proposed to promote emerin association with BAF in the chromatin/lamin B "niche." These results reveal direct control of a conserved LEM domain nuclear lamina component by ß-N-acetylglucosaminyltransferase, a nutrient sensor that regulates cell stress responses, mitosis, and epigenetics.
Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Laminina/metabolismo , Proteínas de la Membrana/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Lámina Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Acetilglucosamina , Acilación/fisiología , Sustitución de Aminoácidos , Cromatina/genética , Proteínas de Unión al ADN/genética , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Laminina/genética , Proteínas de la Membrana/genética , Mutación Missense , N-Acetilglucosaminiltransferasas/genética , Lámina Nuclear/genética , Proteínas Nucleares/genética , Fosforilación/fisiologíaRESUMEN
Oligonucleotide mapping via liquid chromatography with UV detection coupled to tandem mass spectrometry (LC-UV-MS/MS) was recently developed to support development of Comirnaty, the world's first commercial mRNA vaccine which immunizes against the SARS-CoV-2 virus. Analogous to peptide mapping of therapeutic protein modalities, oligonucleotide mapping described here provides direct primary structure characterization of mRNA, through enzymatic digestion, accurate mass determinations, and optimized collisionally-induced fragmentation. Sample preparation for oligonucleotide mapping is a rapid, one-pot, one-enzyme digestion. The digest is analyzed via LC-MS/MS with an extended gradient and resulting data analysis employs semi-automated software. In a single method, oligonucleotide mapping readouts include a highly reproducible and completely annotated UV chromatogram with 100% maximum sequence coverage, and a microheterogeneity assessment of 5' terminus capping and 3' terminus poly(A)-tail length. Oligonucleotide mapping was pivotal to ensure the quality, safety, and efficacy of mRNA vaccines by providing: confirmation of construct identity and primary structure and assessment of product comparability following manufacturing process changes. More broadly, this technique may be used to directly interrogate the primary structure of RNA molecules in general.
Asunto(s)
COVID-19 , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , SARS-CoV-2/genética , Vacunas contra la COVID-19 , Oligonucleótidos/genética , COVID-19/prevención & control , Vacunas de ARNm , Mapeo Peptídico/métodos , ARN Mensajero/genéticaRESUMEN
Next-generation site-specific cysteine-based antibody-drug-conjugates (ADCs) broaden therapeutic index by precise drug-antibody attachments. However, manufacturing such ADCs for clinical validation requires complex full reduction and reoxidation processes, impacting product quality. To overcome this technical challenge, we developed a novel antibody manufacturing process through cysteine (Cys) metabolic engineering in Chinese hamster ovary cells implementing a unique cysteine-capping technology. This development enabled a direct conjugation of drugs after chemoselective-reduction with mild reductant tris(3-sulfonatophenyl)phosphine. This innovative platform produces clinical ADC products with superior quality through a simplified manufacturing process. This technology also has the potential to integrate Cys-based site-specific conjugation with other site-specific conjugation methodologies to develop multi-drug ADCs and exploit multi-mechanisms of action for effective cancer treatments.