Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Genet ; 14: 1225196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705610

RESUMEN

Background: Alzheimer's Disease (AD) is an age-related progressive neurodegenerative disorder characterized by mental deterioration, memory deficit, and multiple cognitive abnormalities, with an overall prevalence of ∼2% among industrialized countries. Although a proper diagnosis is not yet available, identification of miRNAs and mRNAs could offer valuable insights into the molecular pathways underlying AD's prognosis. Method: This study aims to utilize microarray bioinformatic analysis to identify potential biomarkers of AD, by analyzing six microarray datasets (GSE4757, GSE5281, GSE16759, GSE28146, GSE12685, and GSE1297) of AD patients, and control groups. Furthermore, this study conducted gene ontology, pathways analysis, and protein-protein interaction network to reveal major pathways linked to probable biological events. The datasets were meta-analyzed using bioinformatics tools, to identify significant differentially expressed genes (DEGs) and hub genes and their targeted miRNAs'. Results: According to the findings, CXCR4, TGFB1, ITGB1, MYH11, and SELE genes were identified as hub genes in this study. The analysis of DEGs using GO (gene ontology) revealed that these genes were significantly enriched in actin cytoskeleton regulation, ECM-receptor interaction, and hypertrophic cardiomyopathy. Eventually, hsa-mir-122-5p, hsa-mir-106a-5p, hsa-mir-27a-3p, hsa-mir16-5p, hsa-mir-145-5p, hsa-mir-12-5p, hsa-mir-128-3p, hsa-mir 3200-3p, hsa-mir-103a-3p, and hsa-mir-9-3p exhibited significant interactions with most of the hub genes. Conclusion: Overall, these genes can be considered as pivotal biomarkers for diagnosing the pathogenesis and molecular functions of AD.

2.
Cancer Gene Ther ; 29(8-9): 1105-1116, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35082400

RESUMEN

Mesenchymal stem cells (MSCs) are known as promising sources for cancer therapy and can be utilized as vehicles in cancer gene therapy. MSC-derived exosomes are central mediators in the therapeutic functions of MSCs, known as the novel cell-free alternatives to MSC-based cell therapy. MSC-derived exosomes show advantages including higher safety as well as more stability and convenience for storage, transport and administration compared to MSCs transplant therapy. Unmodified MSC-derived exosomes can promote or inhibit tumors while modified MSC-derived exosomes are involved in the suppression of cancer development and progression via the delivery of several therapeutics molecules including chemotherapeutic drugs, miRNAs, anti-miRNAs, specific siRNAs, and suicide gene mRNAs. In most malignancies, dysregulation of miRNAs not only occurs as a consequence of cancer progression but also is directly involved during tumor initiation and development due to their roles as oncogenes (oncomiRs) or tumor suppressors (TS-miRNAs). MiRNA restoration is usually achieved by overexpression of TS-miRNAs using synthetic miRNA mimics and viral vectors or even downregulation of oncomiRs using anti-miRNAs. Similar to other therapeutic molecules, the efficacy of miRNAs restoration in cancer therapy depends on the effectiveness of the delivery system. In the present review, we first provided an overview of the properties and potentials of MSCs in cancer therapy as well as the application of MSC-derived exosomes in cancer therapy. Finally, we specifically focused on harnessing the MSC-derived exosomes for the aim of miRNA delivery in cancer therapy.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Neoplasias , Tratamiento Basado en Trasplante de Células y Tejidos , Exosomas/genética , Humanos , MicroARNs/genética , Neoplasias/genética , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA