Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 176(6): 1367-1378.e8, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30773319

RESUMEN

The root cap surrounding the tip of plant roots is thought to protect the delicate stem cells in the root meristem. We discovered that the first layer of root cap cells is covered by an electron-opaque cell wall modification resembling a plant cuticle. Cuticles are polyester-based protective structures considered exclusive to aerial plant organs. Mutations in cutin biosynthesis genes affect the composition and ultrastructure of this cuticular structure, confirming its cutin-like characteristics. Strikingly, targeted degradation of the root cap cuticle causes a hypersensitivity to abiotic stresses during seedling establishment. Furthermore, lateral root primordia also display a cuticle that, when defective, causes delayed outgrowth and organ deformations, suggesting that it facilitates lateral root emergence. Our results show that the previously unrecognized root cap cuticle protects the root meristem during the critical phase of seedling establishment and promotes the efficient formation of lateral roots.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Cápsula de Raíz de Planta/metabolismo , Cápsula de Raíz de Planta/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Lípidos de la Membrana/biosíntesis , Lípidos de la Membrana/metabolismo , Meristema/metabolismo , Mutación , Raíces de Plantas/citología , Plantones/genética , Plantones/crecimiento & desarrollo
2.
Cell ; 164(3): 447-59, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26777403

RESUMEN

Plant roots forage the soil for minerals whose concentrations can be orders of magnitude away from those required for plant cell function. Selective uptake in multicellular organisms critically requires epithelia with extracellular diffusion barriers. In plants, such a barrier is provided by the endodermis and its Casparian strips--cell wall impregnations analogous to animal tight and adherens junctions. Interestingly, the endodermis undergoes secondary differentiation, becoming coated with hydrophobic suberin, presumably switching from an actively absorbing to a protective epithelium. Here, we show that suberization responds to a wide range of nutrient stresses, mediated by the stress hormones abscisic acid and ethylene. We reveal a striking ability of the root to not only regulate synthesis of suberin, but also selectively degrade it in response to ethylene. Finally, we demonstrate that changes in suberization constitute physiologically relevant, adaptive responses, pointing to a pivotal role of the endodermal membrane in nutrient homeostasis.


Asunto(s)
Arabidopsis/fisiología , Raíces de Plantas/fisiología , Ácido Abscísico/metabolismo , Arabidopsis/citología , Diferenciación Celular , Etilenos/metabolismo , Fluoresceínas/análisis , Lípidos/química , Raíces de Plantas/citología , Transducción de Señal
3.
Proc Natl Acad Sci U S A ; 121(21): e2314570121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739804

RESUMEN

Lipid polymers such as cutin and suberin strengthen the diffusion barrier properties of the cell wall in specific cell types and are essential for water relations, mineral nutrition, and stress protection in plants. Land plant-specific glycerol-3-phosphate acyltransferases (GPATs) of different clades are central players in cutin and suberin monomer biosynthesis. Here, we show that the GPAT4/6/8 clade in Arabidopsis thaliana, which is known to mediate cutin formation, is also required for developmentally regulated root suberization, in addition to the established roles of GPAT5/7 in suberization. The GPAT5/7 clade is mainly required for abscisic acid-regulated suberization. In addition, the GPAT5/7 clade is crucial for the formation of the typical lamellated suberin ultrastructure observed by transmission electron microscopy, as distinct amorphous globular polyester structures were deposited in the apoplast of the gpat5 gpat7 double mutant, in contrast to the thinner but still lamellated suberin deposition in the gpat4 gpat6 gpat8 triple mutant. Site-directed mutagenesis revealed that the intrinsic phosphatase activity of GPAT4, GPAT6, and GPAT8, which leads to monoacylglycerol biosynthesis, contributes to suberin formation. GPAT5/7 lack an active phosphatase domain and the amorphous globular polyester structure observed in the gpat5 gpat7 double mutant was partially reverted by treatment with a phosphatase inhibitor or the expression of phosphatase-dead variants of GPAT4/6/8. Thus, GPATs that lack an active phosphatase domain synthetize lysophosphatidic acids that might play a role in the formation of the lamellated structure of suberin. GPATs with active and nonactive phosphatase domains appear to have nonredundant functions and must cooperate to achieve the efficient biosynthesis of correctly structured suberin.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Glicerol-3-Fosfato O-Aciltransferasa , Lípidos , Raíces de Plantas , 1-Acilglicerol-3-Fosfato O-Aciltransferasa , Ácido Abscísico/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/genética , Lípidos/química , Lípidos de la Membrana/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética
4.
EMBO J ; 39(9): e103894, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32187732

RESUMEN

Production of reactive oxygen species (ROS) by NADPH oxidases (NOXs) impacts many processes in animals and plants, and many plant receptor pathways involve rapid, NOX-dependent increases of ROS. Yet, their general reactivity has made it challenging to pinpoint the precise role and immediate molecular action of ROS. A well-understood ROS action in plants is to provide the co-substrate for lignin peroxidases in the cell wall. Lignin can be deposited with exquisite spatial control, but the underlying mechanisms have remained elusive. Here, we establish a kinase signaling relay that exerts direct, spatial control over ROS production and lignification within the cell wall. We show that polar localization of a single kinase component is crucial for pathway function. Our data indicate that an intersection of more broadly localized components allows for micrometer-scale precision of lignification and that this system is triggered through initiation of ROS production as a critical peroxidase co-substrate.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lignina/metabolismo , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , NADPH Oxidasas/metabolismo , Peroxidasas/metabolismo , Raíces de Plantas/metabolismo
5.
BMC Biol ; 21(1): 126, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37280616

RESUMEN

BACKGROUND: The development of nanoscale secondary ion mass spectrometry (NanoSIMS) has revolutionized the study of biological tissues by enabling, e.g., the visualization and quantification of metabolic processes at subcellular length scales. However, the associated sample preparation methods all result in some degree of tissue morphology distortion and loss of soluble compounds. To overcome these limitations an entirely cryogenic sample preparation and imaging workflow is required. RESULTS: Here, we report the development of a CryoNanoSIMS instrument that can perform isotope imaging of both positive and negative secondary ions from flat block-face surfaces of vitrified biological tissues with a mass- and image resolution comparable to that of a conventional NanoSIMS. This capability is illustrated with nitrogen isotope as well as trace element mapping of freshwater hydrozoan Green Hydra tissue following uptake of 15N-enriched ammonium. CONCLUSION: With a cryo-workflow that includes vitrification by high pressure freezing, cryo-planing of the sample surface, and cryo-SEM imaging, the CryoNanoSIMS enables correlative ultrastructure and isotopic or elemental imaging of biological tissues in their most pristine post-mortem state. This opens new horizons in the study of fundamental processes at the tissue- and (sub)cellular level. TEASER: CryoNanoSIMS: subcellular mapping of chemical and isotopic compositions of biological tissues in their most pristine post-mortem state.


Asunto(s)
Microscopía por Crioelectrón , Microscopía Electrónica de Rastreo
6.
Plant Physiol ; 189(2): 557-566, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35099565

RESUMEN

The exocyst is the main plasma membrane vesicle-tethering complex in eukaryotes and is composed of eight different subunits. Yet, in plant genomes, many subunits display multiple copies, thought to reflect evolution of complex subtypes with divergent functions. In Arabidopsis thaliana root endodermal cells, the isoform EXO70A1 is required for positioning of CASP1 at the Casparian Strip Domain, but not for its non-targeted secretion to the plasma membrane. Here, we show that exo84b resembles exo70a1 mutants regarding CASP1 mistargeting and secretion of apoplastic proteins, but exo84b additionally affects secretion of other integral plasma membrane proteins. Moreover, conditional, cell-type-specific gene editing of the single-copy core component SEC6 allows visualization of secretion defects in plant cells with a complete lack of exocyst complex function. Our approach opens avenues for deciphering the complexity/diversity of exocyst functions in plant cells and enables analysis of central trafficking components with lethal phenotypes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Citoplasma/metabolismo , Proteínas de la Membrana/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(46): 29166-29177, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139576

RESUMEN

Lignin has enabled plants to colonize land, grow tall, transport water within their bodies, and protect themselves against various stresses. Consequently, this polyphenolic polymer, impregnating cellulosic plant cell walls, is the second most abundant polymer on Earth. Yet, despite its great physiological, ecological, and economical importance, our knowledge of lignin biosynthesis in vivo, especially the polymerization steps within the cell wall, remains vague-specifically, the respective roles of the two polymerizing enzymes classes, laccases and peroxidases. One reason for this lies in the very high numbers of laccases and peroxidases encoded by 17 and 73 homologous genes, respectively, in Arabidopsis Here, we have focused on a specific lignin structure, the ring-like Casparian strips (CSs) within the root endodermis. By reducing candidate numbers using cellular resolution expression and localization data and by boosting stacking of mutants using CRISPR-Cas9, we mutated the majority of laccases in Arabidopsis in a nonuple mutant-essentially abolishing laccases with detectable endodermal expression. Yet, we were unable to detect even slight defects in CS formation. By contrast, we were able to induce a complete absence of CS formation in a quintuple peroxidase mutant. Our findings are in stark contrast to the strong requirement of xylem vessels for laccase action and indicate that lignin in different cell types can be polymerized in very distinct ways. We speculate that cells lignify differently depending on whether lignin is localized or ubiquitous and whether cells stay alive during and after lignification, as well as the composition of the cell wall.


Asunto(s)
Lacasa/genética , Lacasa/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Mutación , Fenotipo , Raíces de Plantas , Polimerizacion , Xilema/metabolismo
8.
Plant Physiol ; 185(1): 196-209, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631809

RESUMEN

Legumes play an important role in the soil nitrogen availability via symbiotic nitrogen fixation (SNF). Phosphate (Pi) deficiency severely impacts SNF because of the high Pi requirement of symbiosis. Whereas PHT1 transporters are involved in Pi uptake into nodules, it is unknown how Pi is transferred from the plant infected cells to nitrogen-fixing bacteroids. We hypothesized that Medicago truncatula genes homologous to Arabidopsis PHO1, encoding a vascular apoplastic Pi exporter, are involved in Pi transfer to bacteroids. Among the seven MtPHO1 genes present in M. truncatula, we found that two genes, namely MtPHO1.1 and MtPHO1.2, were broadly expressed across the various nodule zones in addition to the root vascular system. Expressions of MtPHO1.1 and MtPHO1.2 in Nicotiana benthamiana mediated specific Pi export. Plants with nodule-specific downregulation of both MtPHO1.1 and MtPHO1.2 were generated by RNA interference (RNAi) to examine their roles in nodule Pi homeostasis. Nodules of RNAi plants had lower Pi content and a three-fold reduction in SNF, resulting in reduced shoot growth. Whereas the rate of 33Pi uptake into nodules of RNAi plants was similar to control, transfer of 33Pi from nodule cells into bacteroids was reduced and bacteroids activated their Pi-deficiency response. Our results implicate plant MtPHO1 genes in bacteroid Pi homeostasis and SNF via the transfer of Pi from nodule infected cells to bacteroids.


Asunto(s)
Medicago truncatula/genética , Fijación del Nitrógeno/fisiología , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/fisiología , Nódulos de las Raíces de las Plantas/fisiología , Sinorhizobium meliloti/fisiología , Simbiosis/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Fijación del Nitrógeno/genética , Nódulos de las Raíces de las Plantas/genética , Simbiosis/genética
9.
Plant Physiol ; 173(2): 1146-1163, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27994007

RESUMEN

The plant cuticle is laid down at the cell wall surface of epidermal cells in a wide variety of structures, but the functional significance of this architectural diversity is not yet understood. Here, the structure-function relationship of the petal cuticle of Arabidopsis (Arabidopsis thaliana) was investigated. Applying Fourier transform infrared microspectroscopy, the cutin mutants long-chain acyl-coenzyme A synthetase2 (lacs2), permeable cuticle1 (pec1), cyp77a6, glycerol-3-phosphate acyltransferase6 (gpat6), and defective in cuticular ridges (dcr) were grouped in three separate classes based on quantitative differences in the ν(C=O) and ν(C-H) band vibrations. These were associated mainly with the quantity of 10,16-dihydroxy hexadecanoic acid, a monomer of the cuticle polyester, cutin. These spectral features were linked to three different types of cuticle organization: a normal cuticle with nanoridges (lacs2 and pec1 mutants); a broad translucent cuticle (cyp77a6 and dcr mutants); and an electron-opaque multilayered cuticle (gpat6 mutant). The latter two types did not have typical nanoridges. Transmission electron microscopy revealed considerable variations in cuticle thickness in the dcr mutant. Different double mutant combinations showed that a low amount of C16 monomers in cutin leads to the appearance of an electron-translucent layer adjacent to the cuticle proper, which is independent of DCR action. We concluded that DCR is not only essential for incorporating 10,16-dihydroxy C16:0 into cutin but also plays a crucial role in the organization of the cuticle, independent of cutin composition. Further characterization of the mutant petals suggested that nanoridge formation and conical cell shape may contribute to the reduction of physical adhesion forces between petals and other floral organs during floral development.


Asunto(s)
Arabidopsis/fisiología , Arabidopsis/ultraestructura , Flores/fisiología , Flores/ultraestructura , Lípidos de la Membrana/química , Epidermis de la Planta/ultraestructura , Adhesividad , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Forma de la Célula , Pared Celular/metabolismo , Pared Celular/ultraestructura , Flores/citología , Genotipo , Modelos Biológicos , Mutación/genética , Ácidos Palmíticos/metabolismo , Pectinas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
10.
Nat Plants ; 10(1): 118-130, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38168610

RESUMEN

Plant roots integrate environmental signals with development using exquisite spatiotemporal control. This is apparent in the deposition of suberin, an apoplastic diffusion barrier, which regulates flow of water, solutes and gases, and is environmentally plastic. Suberin is considered a hallmark of endodermal differentiation but is absent in the tomato endodermis. Instead, suberin is present in the exodermis, a cell type that is absent in the model organism Arabidopsis thaliana. Here we demonstrate that the suberin regulatory network has the same parts driving suberin production in the tomato exodermis and the Arabidopsis endodermis. Despite this co-option of network components, the network has undergone rewiring to drive distinct spatial expression and with distinct contributions of specific genes. Functional genetic analyses of the tomato MYB92 transcription factor and ASFT enzyme demonstrate the importance of exodermal suberin for a plant water-deficit response and that the exodermal barrier serves an equivalent function to that of the endodermis and can act in its place.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Resistencia a la Sequía , Raíces de Plantas/metabolismo , Pared Celular/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Agua/metabolismo
11.
Nat Commun ; 14(1): 1626, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959183

RESUMEN

Casparian strips (CS) are aligned bands of lignin-impregnated cell walls, building an extracellular diffusion barrier in roots. Their structure profoundly differs from tight junctions (TJ), analogous structures in animals. Nonetheless, CS membrane domain (CSD) proteins 1-5 (CASP1-5) are homologues of occludins, TJ components. CASP-marked membranes display cell wall (matrix) adhesion and membrane protein exclusion. A full CASP knock-out now reveals CASPs are not needed for localized lignification, since correctly positioned lignin microdomains still form in the mutant. Ultra-structurally, however, these microdomains are disorganized, showing excessive cell wall growth, lack of exclusion zone and matrix adhesion, and impaired exocyst dynamics. Proximity-labelling identifies a Rab-GTPase subfamily, known exocyst activators, as potential CASP-interactors and demonstrate their localization and function at the CSD. We propose that CASP microdomains displace initial secretory foci by excluding vesicle tethering factors, thereby ensuring rapid fusion of microdomains into a membrane-cell wall band that seals the extracellular space.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lignina/metabolismo , Membrana Celular/metabolismo , Transporte Biológico
12.
Science ; 382(6673): 935-940, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37995216

RESUMEN

In plants, light direction is perceived by the phototropin photoreceptors, which trigger directional growth responses known as phototropism. The formation of a phototropin activation gradient across a photosensitive organ initiates this response. However, the optical tissue properties that functionally contribute to phototropism remain unclear. In this work, we show that intercellular air channels limit light transmittance through various organs in several species. Air channels enhance light scattering in Arabidopsis hypocotyls, thereby steepening the light gradient. This is required for an efficient phototropic response in Arabidopsis and Brassica. We identified an embryonically expressed ABC transporter required for the presence of air channels in seedlings and a structure surrounding them. Our work provides insights into intercellular air space development or maintenance and identifies a mechanism of directional light sensing in plants.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5 , Proteínas de Arabidopsis , Arabidopsis , Brassica , Hipocótilo , Fototropinas , Fototropismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/metabolismo , Brassica/genética , Brassica/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Luz , Fototropinas/metabolismo , Transducción de Señal
13.
Science ; 382(6671): 719-725, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943924

RESUMEN

Assembly of cell wall polysaccharides into specific patterns is required for plant growth. A complex of RAPID ALKALINIZATION FACTOR 4 (RALF4) and its cell wall-anchored LEUCINE-RICH REPEAT EXTENSIN 8 (LRX8)-interacting protein is crucial for cell wall integrity during pollen tube growth, but its molecular connection with the cell wall is unknown. Here, we show that LRX8-RALF4 complexes adopt a heterotetrametric configuration in vivo, displaying a dendritic distribution. The LRX8-RALF4 complex specifically interacts with demethylesterified pectins in a charge-dependent manner through RALF4's polycationic surface. The LRX8-RALF4-pectin interaction exerts a condensing effect, patterning the cell wall's polymers into a reticulated network essential for wall integrity and expansion. Our work uncovers a dual structural and signaling role for RALF4 in pollen tube growth and in the assembly of complex extracellular polymers.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Pared Celular , Pectinas , Tubo Polínico , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Pectinas/química , Pectinas/metabolismo , Péptidos/metabolismo , Tubo Polínico/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
14.
Nat Commun ; 13(1): 1489, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304458

RESUMEN

Suberin is a fundamental plant biopolymer, found in protective tissues, such as seed coats, exodermis and endodermis of roots. Suberin is deposited in most suberizing cells in the form of lamellae just outside of the plasma membrane, below the primary cell wall. How monomeric suberin precursors, thought to be synthesized at the endoplasmic reticulum, are transported outside of the cell, for polymerization into suberin lamellae has remained obscure. Using electron-microscopy, we observed large numbers of extracellular vesiculo-tubular structures (EVs) to accumulate specifically in suberizing cells, in both chemically and cryo-fixed samples. EV presence correlates perfectly with root suberization and we could block suberin deposition and vesicle accumulation by affecting early, as well as late steps in the secretory pathway. Whereas many previous reports have described EVs in the context of biotic interactions, our results suggest a developmental role for extracellular vesicles in the formation of a major cell wall polymer.


Asunto(s)
Células Vegetales , Raíces de Plantas , Membrana Celular , Pared Celular/metabolismo , Lípidos , Raíces de Plantas/metabolismo
15.
Elife ; 112022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35029147

RESUMEN

Efficient uptake of nutrients in both animal and plant cells requires tissue-spanning diffusion barriers separating inner tissues from the outer lumen/soil. However, we poorly understand how such contiguous three-dimensional superstructures are formed in plants. Here, we show that correct establishment of the plant Casparian Strip (CS) network relies on local neighbor communication. We show that positioning of Casparian Strip membrane domains (CSDs) is tightly coordinated between neighbors in wild-type and that restriction of domain formation involves the putative extracellular protease LOTR1. Impaired domain restriction in lotr1 leads to fully functional CSDs at ectopic positions, forming 'half strips'. LOTR1 action in the endodermis requires its expression in the stele. LOTR1 endodermal expression cannot complement, while cortex expression causes a dominant-negative phenotype. Our findings establish LOTR1 as a crucial player in CSD positioning acting in a directional, non-cell-autonomous manner to restrict and coordinate CS positioning.


Asunto(s)
Proteínas de Arabidopsis , Pared Celular , Lignina , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Pared Celular/fisiología , Lignina/química , Lignina/genética , Lignina/fisiología , Regiones Promotoras Genéticas/genética
16.
Front Plant Sci ; 12: 786874, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069645

RESUMEN

Cuticles are specialized cell wall structures that form at the surface of terrestrial plant organs. They are largely comprised lipidic compounds and are deposited in the apoplast, external to the polysaccharide-rich primary wall, creating a barrier to diffusion of water and solutes, as well as to environmental factors. The predominant cuticle component is cutin, a polyester that is assembled as a complex matrix, within and on the surface of which aliphatic and aromatic wax molecules accumulate, further modifying its properties. To reach the point of cuticle assembly the different acyl lipid-containing components are first exported from the cell across the plasma membrane and then traffic across the polysaccharide wall. The export of cutin precursors and waxes from the cell is known to involve plasma membrane-localized ATP-binding cassette (ABC) transporters; however, other secretion mechanisms may also contribute. Indeed, extracellular vesiculo-tubular structures have recently been reported in Arabidopsis thaliana (Arabidopsis) to be associated with the deposition of suberin, a polyester that is structurally closely related to cutin. Intriguingly, similar membranous structures have been observed in leaves and petals of Arabidopsis, although in lower numbers, but no close association with cutin formation has been identified. The possibility of multiple export mechanisms for cuticular components acting in parallel will be discussed, together with proposals for how cuticle precursors may traverse the polysaccharide cell wall before their assimilation into the cuticle macromolecular architecture.

17.
Curr Biol ; 31(10): 2111-2123.e9, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33756108

RESUMEN

The plant cuticle is deposited on the surface of primary plant organs, such as leaves, fruits, and floral organs, forming a diffusion barrier and protecting the plant against various abiotic and biotic stresses. Cutin, the structural polyester of the plant cuticle, is synthesized in the apoplast. Plasma-membrane-localized ATP-binding cassette (ABC) transporters of the G family have been hypothesized to export cutin precursors. Here, we characterize SlABCG42 of tomato representing an ortholog of AtABCG32 in Arabidopsis. SlABCG42 expression in Arabidopsis complements the cuticular deficiencies of the Arabidopsis pec1/abcg32 mutant. RNAi-dependent downregulation of both tomato genes encoding proteins highly homologous to AtABCG32 (SlABCG36 and SlABCG42) leads to reduced cutin deposition and formation of a thinner cuticle in tomato fruits. By using a tobacco (Nicotiana benthamiana) protoplast system, we show that AtABCG32 and SlABCG42 have an export activity for 10,16-dihydroxy hexadecanoyl-2-glycerol, a cutin precursor in vivo. Interestingly, also free ω-hydroxy hexadecanoic acid as well as hexadecanedioic acid were exported, furthering the research on the identification of cutin precursors in vivo and the respective mechanisms of their integration into the cutin polymer.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G , Epidermis de la Planta , Proteínas de Plantas , Solanum lycopersicum , Transportador de Casetes de Unión a ATP, Subfamilia G/genética , Transportador de Casetes de Unión a ATP, Subfamilia G/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Lípidos de la Membrana , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
18.
Nat Plants ; 7(3): 353-364, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33686223

RESUMEN

Plant roots acquire nutrients and water while managing interactions with the soil microbiota. The root endodermis provides an extracellular diffusion barrier through a network of lignified cell walls called Casparian strips, supported by subsequent formation of suberin lamellae. Whereas lignification is thought to be irreversible, suberin lamellae display plasticity, which is crucial for root adaptative responses. Although suberin is a major plant polymer, fundamental aspects of its biosynthesis and turnover have remained obscure. Plants shape their root system via lateral root formation, an auxin-induced process requiring local breaking and re-sealing of endodermal lignin and suberin barriers. Here, we show that differentiated endodermal cells have a specific, auxin-mediated transcriptional response dominated by cell wall remodelling genes. We identified two sets of auxin-regulated GDSL lipases. One is required for suberin synthesis, while the other can drive suberin degradation. These enzymes have key roles in suberization, driving root suberin plasticity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Lípidos , Dominios Proteicos , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Conjuntos de Datos como Asunto , Endodermo/metabolismo , Técnicas de Inactivación de Genes , Ácidos Indolacéticos/metabolismo , Lípidos/genética , Células Vegetales/metabolismo , Raíces de Plantas/metabolismo , Polimerizacion , Proteolisis
19.
Sci Rep ; 9(1): 19540, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31863073

RESUMEN

The kidney needs to adapt daily to variable dietary K+ contents via various mechanisms including diuretic, acid-base and hormonal changes that are still not fully understood. In this study, we demonstrate that following a K+-deficient diet in wildtype mice, the serine protease CAP2/Tmprss4 is upregulated in connecting tubule and cortical collecting duct and also localizes to the medulla and transitional epithelium of the papilla and minor calyx. Male CAP2/Tmprss4 knockout mice display altered water handling and urine osmolality, enhanced vasopressin response leading to upregulated adenylate cyclase 6 expression and cAMP overproduction, and subsequently greater aquaporin 2 (AQP2) and Na+-K+-2Cl- cotransporter 2 (NKCC2) expression following K+-deficient diet. Urinary acidification coincides with significantly increased H+,K+-ATPase type 2 (HKA2) mRNA and protein expression, and decreased calcium and phosphate excretion. This is accompanied by increased glucocorticoid receptor (GR) protein levels and reduced 11ß-hydroxysteroid dehydrogenase 2 activity in knockout mice. Strikingly, genetic nephron-specific deletion of GR leads to the mirrored phenotype of CAP2/Tmprss4 knockouts, including increased water intake and urine output, urinary alkalinisation, downregulation of HKA2, AQP2 and NKCC2. Collectively, our data unveil a novel role of the serine protease CAP2/Tmprss4 and GR on renal water handling upon dietary K+ depletion.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Acuaporina 2/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Riñón/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Potasio en la Dieta/metabolismo , Receptores de Glucocorticoides/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo
20.
Nat Plants ; 3: 17058, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28436943

RESUMEN

In a striking case of evolutionary convergence, polarized cell layers with ring-like diffusion barriers have evolved in both plant and animal lineages independently. In plants, ring-like Casparian strips become localized by the CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs). The mechanism of this striking localization, however, has remained enigmatic. Here we present a genetic screen aimed at isolating determinants of CASP localization. One of the mutants, lord of the rings 2 (lotr2)/exo70a1, displays dramatic de-localization of CASPs into randomly localized microdomains. EXO70A1 is a subunit of the exocyst complex, a central component of secretion in eukaryotes. Irradiation of EXO70 subunit genes in plants has suggested specialization of this conserved complex. Intriguingly, lotr2/exo70a1 does neither affect secretion of the CASPs, nor that of other membrane proteins in the endodermis, thus separating exocyst activity in localization from a general defect in secretion. Our results establish EXO70A1 as a central player in Casparian strip formation, generating a transient positional information that will be translated into a precisely localized cell wall modification.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Pared Celular/metabolismo , Proteínas de la Membrana/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA