RESUMEN
Monoclonal antibody (mAb)-based immunotherapies targeting systemic and deep-seated fungal infections are still in their early stages of development, with no licensed antifungal mAbs currently being available for patients at risk. The cell wall glycoproteins of Candida albicans are of particular interest as potential targets for therapeutic antibody generation due to their extracellular location and key involvement in fungal pathogenesis. Here, we describe the generation of recombinant human antibodies specifically targeting two key cell wall proteins (CWPs) in C. albicans: Utr2 and Pga31. These antibodies were isolated from a phage display antibody library using peptide antigens representing the surface-exposed regions of CWPs expressed at elevated levels during in vivo infection. Reformatted human-mouse chimeric mAbs preferentially recognized C. albicans hyphal forms compared to yeast cells, and increased binding was observed when the cells were grown in the presence of the antifungal agent caspofungin. In J774.1 macrophage interaction assays, mAb pretreatment resulted in the faster engulfment of C. albicans cells, suggesting a role of the CWP antibodies as opsonizing agents during phagocyte recruitment. Finally, in a series of clinically predictive mouse models of systemic candidiasis, our lead mAb achieved improved survival (83%) and a several-log reduction of the fungal burden in the kidneys, similar to the levels achieved for the fungicidal drug caspofungin and superior to the therapeutic efficacy of any anti-Candida mAb reported to date.
Asunto(s)
Anticuerpos Monoclonales , Candida albicans , Animales , Anticuerpos Antifúngicos , Anticuerpos Monoclonales/farmacología , Antifúngicos/farmacología , Antígenos Fúngicos , Caspofungina , Pared Celular , Epítopos , Humanos , RatonesRESUMEN
Candida albicans is a clinically important polymorphic fungal pathogen that causes life-threatening invasive infections in immunocompromised patients. Antifungal therapy failure is a substantial clinical problem, due to the emergence of an increasing number of drug-resistant isolates. Caspofungin is a common antifungal drug, often used as first-line therapy that inhibits cell wall ß-(1,3)-glucan synthesis. In this work, the cell surface of different echinocandin-resistant C. albicans clinical isolates was compared with sensitive isolates and their responses to echinocandin treatment analyzed. Proteomic analysis detected changes in the repertoire of proteins involved in cell wall organization and maintenance, in drug-resistant strains compared to susceptible isolates and after incubation with caspofungin. Moreover, an interaction network was created from the differential expression results. Our findings suggest drug resistance may involve not only a different cell wall architecture, but also a different response to drugs.
Asunto(s)
Antifúngicos , Candida albicans , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Biomarcadores , Candida albicans/genética , Caspofungina/farmacología , Farmacorresistencia Fúngica , Equinocandinas/farmacología , Equinocandinas/uso terapéutico , Humanos , Lipopéptidos/farmacología , Pruebas de Sensibilidad Microbiana , ProteómicaRESUMEN
Fungal pathogens are a continuing challenge due to few effective antifungals and a rise in resistance. In previous work, we described the inhibition of Candida albicans virulence following exposure to the 68 amino acid bacteriocin, EntV, secreted by Enterococcus faecalis. Here, to optimize EntV as a potential therapeutic and better understand its antifungal features, an X-ray structure is obtained. The structure consists of six alpha helices enclosing a seventh 16 amino acid helix (α7). The individual helices are tested for antifungal activity using in vitro and nematode infection assays. Interestingly, α7 retains antifungal, but not antibacterial activity and is also effective against Candida auris and Cryptococcus neoformans. Further reduction of α7 to 12 amino acids retains full antifungal activity, and excellent efficacy is observed in rodent models of C. albicans oropharyngeal, systemic, and venous catheter infections. Together, these results showcase EntV-derived peptides as promising candidates for antifungal therapeutic development.