Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Croat Med J ; 58(3): 203-213, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28613037

RESUMEN

AIM: A collaborative exercise with several institutes was organized by the Forensic DNA Service (FDNAS) and the Institute of the Legal Medicine, 2nd Faculty of Medicine, Charles University in Prague, Czech Republic, with the aim to test performance of different laboratories carrying out DNA analysis of relatively old bone samples. METHODS: Eighteen laboratories participating in the collaborative exercise were asked to perform DNA typing of two samples of bone powder. Two bone samples provided by the National Museum and the Institute of Archaelogy in Prague, Czech Republic, came from archeological excavations and were estimated to be approximately 150 and 400 years old. The methods of genetic characterization including autosomal, gonosomal, and mitochondrial markers was selected solely at the discretion of the participating laboratory. RESULTS: Although the participating laboratories used different extraction and amplification strategies, concordant results were obtained from the relatively intact 150 years old bone sample. Typing was more problematic with the analysis of the 400 years old bone sample due to poorer quality. CONCLUSION: The laboratories performing identification DNA analysis of bone and teeth samples should regularly test their ability to correctly perform DNA-based identification on bone samples containing degraded DNA and potential inhibitors and demonstrate that risk of contamination is minimized.


Asunto(s)
Huesos/química , ADN/análisis , República Checa , Dermatoglifia del ADN/normas , Genética Forense , Humanos
2.
Forensic Sci Int ; 273: 96-101, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28259046

RESUMEN

In our standard protocol for DNA extraction from skeletal remains of unidentified bodies, bone lysates resulting from decalcification and Proteinase K treatment were purified with the DNA IQ™ Casework Pro Kit for Maxwell®16 automate (Promega, WI). Despite its success in the majority of cases, the DNA purification with paramagnetic silica beads failed in some challenging samples. This failure in DNA recovery was often associated with filter clogging during the required volume reduction of the lysate to enable loading on the automate. Two modifications to the standard method were tested for a more efficient filtering and purification. Adding collagenase to the lysate reduced the filter lead time but did not enhance DNA yield, while organic extraction of the crude lysate solved the filter clogging and resulted in successful DNA purification. The modified method in which a phenol treated lysate was loaded on the automate resulted in successful STR-profiling of the skeletal remains of all 13 unidentified bodies tested, which showed a wide variety in post mortem interval and preservation conditions. The variation in DNA yield between the 28 samples tested showed the importance of bone type selection and multiple sampling in successful STR-profiling of skeletal remains. Despite the disadvantages inherent to phenol, the organic extraction of crude bone lysates enhanced the efficiency of DNA purification with paramagnetic silica beads. The combined method of organic extraction and purification with silica beads resulted in STR-profiling of challenging bone samples.


Asunto(s)
Huesos/química , Dermatoglifia del ADN , ADN/aislamiento & purificación , Microesferas , Dióxido de Silicio/química , Fraccionamiento Químico/métodos , Técnica de Descalcificación , Endopeptidasa K/farmacología , Humanos , Fenómenos Magnéticos , Repeticiones de Microsatélite
3.
Gene ; 492(1): 148-59, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22037484

RESUMEN

BACKGROUND: Mutations in Exostosin-1 (EXT1) or Exostosin-2 (EXT2) cause the autosomal dominant disorder multiple osteochondromas (MO). This disease is mainly characterized by the appearance of multiple cartilage-capped protuberances arising from children's metaphyses and is known to display clinical inter- and intrafamilial variations. EXT1 and EXT2 are both tumor suppressor genes encoding proteins that function as glycosyltransferases, catalyzing the biosynthesis of heparan sulfate. At present, however, very little is known about the regulation of these genes. Two of the most intriguing questions concerning the pathogenesis of MO are how disruption of a ubiquitously expressed gene causes this cartilage-specific disease and how the clinical intrafamilial variation can be explained. Since mutations in the EXT1 gene are responsible for ~65% of the MO families with known causal mutation, our aim was to isolate and characterize the EXT1 promoter region to elucidate the transcriptional regulation of this tumor suppressor gene. METHODS: In the present study, luciferase reporter gene assays were used to experimentally confirm the in silico predicted EXT1 core promoter region. Subsequently, we evaluated the effect of single nucleotide polymorphisms (SNP's) on EXT1 promoter activity and transcription factor binding using luciferase assays, electrophoretic mobility shift assays (EMSA), and enzyme-linked immunosorbent assays (ELISA). Finally, a genotype-phenotype study was performed with the aim to identify one or more genetic modifiers influencing the clinical expression of MO. RESULTS: Transient transfection of HEK293 cells with a series of luciferase reporter constructs mapped the EXT1 core promoter at approximately -917 bp upstream of the EXT1 start codon, within a 123 bp region. This region is conserved in mammals and located within a CpG-island containing a CAAT- and a GT-box. A polymorphic G/C-SNP at -1158 bp (rs34016643) was demonstrated to be located in a USF1 transcription factor binding site, which is lost with the presence of the C-allele resulting in a ~56% increase in EXT1 promoter activity. A genotype-phenotype study was suggestive for association of the C-allele with shorter stature, but also with a smaller number of osteochondromas. CONCLUSIONS: We provide for the first time insight into the molecular regulation of EXT1. Although a larger patient population will be necessary for statistical significance, our data suggest the polymorphism rs34016643, in close proximity of the EXT1 promoter, to be a potential regulatory SNP, which could be a primary modifier that might explain part of the clinical variation observed in MO patients.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , N-Acetilglucosaminiltransferasas/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Secuencia de Bases , Secuencia Conservada , Exostosis Múltiple Hereditaria/genética , Células HEK293 , Humanos , Alineación de Secuencia , Sitio de Iniciación de la Transcripción , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA