Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 643, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937673

RESUMEN

BACKGROUND: The CBM13 family comprises carbohydrate-binding modules that occur mainly in enzymes and in several ricin-B lectins. The ricin-B lectin domain resembles the CBM13 module to a large extent. Historically, ricin-B lectins and CBM13 proteins were considered completely distinct, despite their structural and functional similarities. RESULTS: In this data mining study, we investigate structural and functional similarities of these intertwined protein groups. Because of the high structural and functional similarities, and differences in nomenclature usage in several databases, confusion can arise. First, we demonstrate how public protein databases use different nomenclature systems to describe CBM13 modules and putative ricin-B lectin domains. We suggest the introduction of a novel CBM13 domain identifier, as well as the extension of CAZy cross-references in UniProt to guard the distinction between CAZy and non-CAZy entries in public databases. Since similar problems may occur with other lectin families and CBM families, we suggest the introduction of novel CBM InterPro domain identifiers to all existing CBM families. Second, we investigated phylogenetic, nomenclatural and structural similarities between putative ricin-B lectin domains and CBM13 modules, making use of sequence similarity networks. We concluded that the ricin-B/CBM13 superfamily may be larger than initially thought and that several putative ricin-B lectin domains may display CAZyme functionalities, although biochemical proof remains to be delivered. CONCLUSIONS: Ricin-B lectin domains and CBM13 modules are associated groups of proteins whose database semantics are currently biased towards ricin-B lectins. Revision of the CAZy cross-reference in UniProt and introduction of a dedicated CBM13 domain identifier in InterPro may resolve this issue. In addition, our analyses show that several proteins with putative ricin-B lectin domains show very strong structural similarity to CBM13 modules. Therefore ricin-B lectin domains and CBM13 modules could be considered distant members of a larger ricin-B/CBM13 superfamily.


Asunto(s)
Lectinas , Filogenia , Dominios Proteicos , Ricina , Ricina/química , Ricina/genética , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Bases de Datos de Proteínas , Secuencia de Aminoácidos , Homología de Secuencia de Aminoácido
2.
J Exp Bot ; 73(5): 1602-1622, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34750605

RESUMEN

Fructan metabolism in bacteria and plants relies on fructosyltransferases and fructanases. Plant fructanases (fructan exohydrolase, FEH) only hydrolyse terminal fructose residues. Levan (ß-2,6 linkages) is the most abundant fructan type in bacteria. Dicot fructan accumulators, such as chicory (Cichorium intybus), accumulate inulin (ß-2,1 linkages), harbouring several 1-FEH isoforms for their degradation. Here, a novel chicory fructanase with high affinity for levan was characterized, providing evidence that such enzymes widely occur in higher plants. It is adapted to common microbial fructan profiles, but has low affinity towards chicory inulin, in line with a function in trimming of microbial fructans in the extracellular environment. Docking experiments indicate the importance of an N-glycosylation site close to the active site for substrate specificity. Optimal pH and temperature for levan hydrolysis are 5.0 and 43.7 °C, respectively. Docking experiments suggested multiple substrate binding sites and levan-mediated enzyme dimerization, explaining the observed positive cooperativity. Alignments show a single amino acid shift in the position of a conserved DXX(R/K) couple, typical for sucrose binding in cell wall invertases. A possible involvement of plant fructanases in levan trimming is discussed, in line with the emerging 'fructan detour' concepts, suggesting that levan oligosaccharides act as signalling entities during plant-microbial interactions.


Asunto(s)
Cichorium intybus , Secuencia de Aminoácidos , Cichorium intybus/metabolismo , Fructanos/metabolismo , Glicósido Hidrolasas/metabolismo , beta-Fructofuranosidasa/metabolismo
3.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121292

RESUMEN

Stress granules are cytoplasmic compartments, which serve as mRNA storage units during stress, therefore regulating translation. The Arabidopsis thaliana lectin ArathEULS3 has been widely described as a stress inducible gene. This study aimed to examine in detail the localization of ArathEULS3 lectin in normal and stressed cells. Colocalization experiments revealed that the nucleo-cytoplasmic lectin ArathEULS3 relocates to stress granules after stress. The ArathEULS3 sequence encodes a protein with a EUL lectin domain and an N-terminal domain with unknown structure and function. Bioinformatics analyses showed that the N-terminal domain sequence contains intrinsically disordered regions and likely does not exhibit a stable protein fold. Plasmolysis experiments indicated that ArathEULS3 also localizes to the apoplast, suggesting that this protein might follow an unconventional route for secretion. As part of our efforts we also investigated the interactome of ArathEULS3 and identified several putative interaction partners important for the protein translation process.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Gránulos Citoplasmáticos/metabolismo , Lectinas/metabolismo , Estrés Fisiológico , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Núcleo Celular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Lectinas/química , Unión Proteica
4.
Cell Surf ; 8: 100091, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36465479

RESUMEN

Lectins are carbohydrate-binding proteins and are involved in a multitude of biological functions. Lectins at the surface of plant cells often occur as lectin receptor-like kinases (LecRLK) anchored to the plasma membrane. These LecRLKs are part of the plant's pattern-recognition receptor (PRR) system enabling the plant to perceive threats and respond adequately. Furthermore, plant lectins also occur as secreted proteins, which are associated with stress signalling and defence. The aim of this short review is to provide a general perspective on plant lectins and their role at the cell surface.

5.
Plant Sci ; 313: 111096, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34763880

RESUMEN

For decades, the biological roles of plant lectins remained obscure and subject to speculation. With the advent of technological and scientific progress, researchers have compiled a vast amount of information regarding the structure, biological activities and functionality of hundreds of plant lectins. Data mining of genomes and transcriptome sequencing and high-throughput analyses have resulted in new insights. This review aims to provide an overview of what is presently known about plant lectins, highlighting their versatility and the importance of plant lectins for a multitude of biological processes, such as plant development, immunity, stress signaling and regulation of gene expression. Though lectins primarily act as readers of the glycocode, the multiple roles of plant lectins suggest that their functionality goes beyond carbohydrate-recognition.


Asunto(s)
Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Desarrollo de la Planta/fisiología , Inmunidad de la Planta/fisiología , Lectinas de Plantas/química , Lectinas de Plantas/genética , Lectinas de Plantas/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
6.
Biomolecules ; 11(5)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070047

RESUMEN

Plant development represents a continuous process in which the plant undergoes morphological, (epi)genetic and metabolic changes. Starting from pollination, seed maturation and germination, the plant continues to grow and develops specialized organs to survive, thrive and generate offspring. The development of plants and the interplay with its environment are highly linked to glycosylation of proteins and lipids as well as metabolism and signaling of sugars. Although the involvement of these protein modifications and sugars is well-studied, there is still a long road ahead to profoundly comprehend their nature, significance, importance for plant development and the interplay with stress responses. This review, approached from the plants' perspective, aims to focus on some key findings highlighting the importance of glycosylation and sugar signaling for plant development.


Asunto(s)
Desarrollo de la Planta , Plantas/genética , Azúcares/metabolismo , Epigénesis Genética , Germinación , Glicosilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA