Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 89(1): 29-39, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36063499

RESUMEN

PURPOSE: To explore the potential of deuterium metabolic imaging (DMI) in the human brain in vivo at 7 T, using a multi-element deuterium (2 H) RF coil for 3D volume coverage. METHODS: 1 H-MR images and localized 2 H MR spectra were acquired in vivo in the human brain of 3 healthy subjects to generate DMI maps of 2 H-labeled water, glucose, and glutamate/glutamine (Glx). In addition, non-localized 2 H-MR spectra were acquired both in vivo and in vitro to determine T1 and T2 relaxation times of deuterated metabolites at 7 T. The performance of the 2 H coil was assessed through numeric simulations and experimentally acquired B1 + maps. RESULTS: 3D DMI maps covering the entire human brain in vivo were obtained from well-resolved deuterated (2 H) metabolite resonances of water, glucose, and Glx. The T1 and T2 relaxation times were consistent with those reported at adjacent field strengths. Experimental B1 + maps were in good agreement with simulations, indicating efficient and homogeneous B1 + transmission and low RF power deposition for 2 H, consistent with a similar array coil design reported at 9.4 T. CONCLUSION: Here, we have demonstrated the successful implementation of 3D DMI in the human brain in vivo at 7 T. The spatial and temporal nominal resolutions achieved at 7 T (i.e., 2.7 mL in 28 min, respectively) were close to those achieved at 9.4 T and greatly outperformed DMI at lower magnetic fields. DMI at 7 T and beyond has clear potential in applications dealing with small brain lesions.


Asunto(s)
Encéfalo , Imagenología Tridimensional , Humanos , Deuterio , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Imagenología Tridimensional/métodos , Glucosa/metabolismo , Agua , Imagen por Resonancia Magnética/métodos
2.
Magn Reson Med ; 88(1): 28-37, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35225375

RESUMEN

PURPOSE: To integrate deuterium metabolic imaging (DMI) with clinical MRI through an interleaved MRI and DMI acquisition workflow. Interleaved MRI-DMI was enabled with hardware and pulse sequence modifications, and the performance was demonstrated using fluid-attenuated inversion recovery (FLAIR) MRI as an example. METHODS: Interleaved FLAIR-DMI was developed by interleaving the 2 H excitation and acquisition time windows into the intrinsic delay periods presented in the FLAIR method. All 2 H MR signals were up-converted to the 1 H Larmor frequency using a custom-built hardware unit, which also achieved frequency and phase locking of the output signal in real-time. The interleaved measurements were compared with direct measurements both in phantom and in the human brain in vivo. RESULTS: The interleaved MRI-DMI acquisition strategy allowed simultaneous detection of FLAIR MRI and DMI in the same scan time as a FLAIR-only MRI acquisition. Both phantom and in vivo data showed that the MR image quality, DMI sensitivity as well as information content were preserved using interleaved MRI-DMI. CONCLUSION: The interleaved MRI-DMI technology can be used to extend clinical MRI protocols with DMI, thereby offering a metabolic component to the MR imaging contrasts without a penalty on patient comfort or scan time.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Medios de Contraste , Deuterio , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
3.
Neuroimage ; 244: 118639, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637905

RESUMEN

PURPOSE: To present first highly spatially resolved deuterium metabolic imaging (DMI) measurements of the human brain acquired with a dedicated coil design and a fast chemical shift imaging (CSI) sequence at an ultrahigh field strength of B0 = 9.4 T. 2H metabolic measurements with a temporal resolution of 10 min enabled the investigation of the glucose metabolism in healthy human subjects. METHODS: The study was performed with a double-tuned coil with 10 TxRx channels for 1H and 8TxRx/2Rx channels for 2H and an Ernst angle 3D CSI sequence with a nominal spatial resolution of 2.97 ml and a temporal resolution of 10 min. RESULTS: The metabolism of [6,6'-2H2]-labeled glucose due to the TCA cycle could be made visible in high resolution metabolite images of deuterated water, glucose and Glx over the entire human brain. CONCLUSION: X-nuclei MRSI as DMI can highly benefit from ultrahigh field strength enabling higher temporal and spatial resolutions.


Asunto(s)
Encéfalo/diagnóstico por imagen , Deuterio/metabolismo , Imagen por Resonancia Magnética/métodos , Glucosa/metabolismo , Sustancia Gris/diagnóstico por imagen , Humanos
4.
Magn Reson Med ; 86(1): 62-68, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33590529

RESUMEN

PURPOSE: Deuterium metabolic imaging (DMI) combined with [6,6'-2 H2 ]-glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6'-2 H2 ]-glucose and [6,6'-2 H2 ]-glycogen in the 2 H NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using 13 C MRS. Here the NMR visibility of 2 H-labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6'-2 H2 ]-glucose. METHODS: Mice were provided drinking water containing 2 H-labeled glucose. High-resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose-releasing enzyme amyloglucosidase. RESULTS: 2 H-labeled glycogen was barely detectable in solution using 2 H NMR because of the very short T2 (<2 ms) of 2 H-labeled glycogen, giving a spectral line width that is more than five times as broad as that of 13 C-labeled glycogen (T2 = ~10 ms). CONCLUSION: 2 H-labeled glycogen is not detectable with 2 H MRS(I) under in vivo conditions, leaving 13 C MRS as the preferred technique for in vivo detection of glycogen.


Asunto(s)
Glucógeno Hepático , Imagen por Resonancia Magnética , Animales , Deuterio , Glucosa , Hígado/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Ratones
5.
NMR Biomed ; 34(1): e4415, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33001485

RESUMEN

A multitude of extracranial lipid suppression methods exist for proton MRSI acquisitions. Popular and emerging lipid suppression methods each have their inherent set of advantages and disadvantages related to the achievable level of lipid suppression, RF power deposition, insensitivity to B1+ field and lipid T1 heterogeneity, brain coverage, spatial selectivity, chemical shift displacement (CSD) errors and the reliability of spectroscopic data spanning the observed 0.9-4.7 ppm band. The utility of elliptical localization with pulsed second order fields (ECLIPSE) was previously demonstrated with a greater than 100-fold in extracranial lipid suppression and low power requirements utilizing 3 kHz bandwidth AFP pulses. Like all gradient-based localization methods, ECLIPSE is sensitive to CSD errors, resulting in a modified metabolic profile in edge-of-ROI voxels. In this work, ECLIPSE is extended with 15 kHz bandwidth second order gradient-modulated RF pulses based on the gradient offset-independent adiabaticity (GOIA) algorithm to greatly reduce CSD and improve spatial selectivity. An adiabatic double spin-echo ECLIPSE inner volume selection (TE = 45 ms) MRSI method and an ECLIPSE outer volume suppression (TE = 3.2 ms) FID-MRSI method were implemented. Both GOIA-ECLIPSE MRSI sequences provided artifact-free metabolite spectra in vivo, with a greater than 100-fold in lipid suppression and less than 2.6 mm in-plane CSD and less than 3.3 mm transition width for edge-of-ROI voxels, representing an ~5-fold improvement compared with the parent, nongradient-modulated method. Despite the 5-fold larger bandwidth, GOIA-ECLIPSE only required a 1.9-fold increase in RF power. The highly robust lipid suppression combined with low CSD and sharp ROI edge transitions make GOIA-ECLIPSE an attractive alternative to commonly employed lipid suppression methods. Furthermore, the low RF power deposition demonstrates that GOIA-ECLIPSE is very well suited for high field (≥3 T) MRSI applications.


Asunto(s)
Algoritmos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Protones , Simulación por Computador , Femenino , Humanos , Lípidos/análisis , Masculino , Fantasmas de Imagen , Ondas de Radio , Agua/análisis
6.
Magn Reson Med ; 83(5): 1539-1552, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31742799

RESUMEN

PURPOSE: The robust and reliable utilization of proton magnetic resonance spectroscopic imaging (MRSI) at high fields is hampered by several key technical difficulties, including contamination from extracranial lipids. To that end, this work presents novel lipid suppression sequences for proton MRSI in the human brain utilizing elliptical localization with pulsed second-order fields (ECLIPSE). METHODS: Two lipid suppression methods were implemented with the ECLIPSE gradient insert. One method is a variable power, 4-pulse sequence optimized to achieve outer volume suppression (OVS) and compared against a standard, 8-slice OVS method. The second ECLIPSE method is implemented as an inversion recovery (IR) sequence with elliptical inner volume selection (IVS) and compared against a global IR method. RESULTS: The ECLIPSE-OVS sequence provided a 116-fold mean lipid suppression (range, 104-134), whereas an optimized 8-slice OVS sequence achieved 15-fold suppression (range, 13-18). Furthermore, the superior ECLIPSE-OVS suppression was achieved at 30% of the radiofrequency (RF) power required by 8-slice OVS. The ECLIPSE-based IR sequence suppressed skull lipids by 155-fold (range, 122-257), compared to 16-fold suppression (range, 14-19) achieved with IR. CONCLUSION: OVS and IVS executed with ECLIPSE provide robust and effective lipid suppression at reduced RF power with high immunity to variations in B1 and T1 .


Asunto(s)
Algoritmos , Protones , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones
7.
NMR Biomed ; 33(3): e4235, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31879985

RESUMEN

Deuterium metabolic imaging (DMI) is a novel MR-based method to spatially map metabolism of deuterated substrates such as [6,6'-2 H2 ]-glucose in vivo. Compared with traditional 13 C-MR-based metabolic studies, the MR sensitivity of DMI is high due to the larger 2 H magnetic moment and favorable T1 and T2 relaxation times. Here, the magnetic field dependence of DMI sensitivity and transmit efficiency is studied on phantoms and rat brain postmortem at 4, 9.4 and 11.7 T. The sensitivity and spectral resolution on human brain in vivo are investigated at 4 and 7 T before and after an oral dose of [6,6'-2 H2 ]-glucose. For small animal surface coils (Ø 30 mm), the experimentally measured sensitivity and transmit efficiency scale with the magnetic field to a power of +1.75 and -0.30, respectively. These are in excellent agreement with theoretical predictions made from the principle of reciprocity for a coil noise-dominant regime. For larger human surface coils (Ø 80 mm), the sensitivity scales as a +1.65 power. The spectral resolution increases linearly due to near-constant linewidths. With optimal multireceiver arrays the acquisition of DMI at a nominal 1 mL spatial resolution is feasible at 7 T.


Asunto(s)
Deuterio/metabolismo , Campos Magnéticos , Imagen por Resonancia Magnética , Animales , Encéfalo/diagnóstico por imagen , Espectroscopía de Resonancia Magnética con Carbono-13 , Humanos , Fantasmas de Imagen , Ratas , Relación Señal-Ruido
8.
NMR Biomed ; 32(10): e4172, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31478594

RESUMEN

In the last 25 years 13 C MRS has been established as the only noninvasive method for measuring glutamate neurotransmission and cell specific neuroenergetics. Although technically and experimentally challenging 13 C MRS has already provided important new information on the relationship between neuroenergetics and neuronal function, the high energy cost of brain function in the resting state and the role of altered neuroenergetics and neurotransmitter cycling in disease. In this paper we review the metabolic and neurotransmitter pathways that can be measured by 13 C MRS and key findings on the linkage between neuroenergetics, neurotransmitter cycling, and brain function. Applications of 13 C MRS to neurological and psychiatric disease as well as brain cancer are reviewed. Recent technological developments that may help to overcome spatial resolution and brain coverage limitations of 13 C MRS are discussed.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Isótopos de Carbono/química , Espectroscopía de Resonancia Magnética , Trastornos Mentales/metabolismo , Neurotransmisores/metabolismo , Animales , Neoplasias Encefálicas/fisiopatología , Humanos , Trastornos Mentales/fisiopatología , Transmisión Sináptica
9.
Magn Reson Med ; 80(1): 11-20, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29134686

RESUMEN

PURPOSE: 13 C magnetic resonance spectroscopy (MRS) in combination with infusion of 13 C-labeled substrates has led to unique insights into human brain metabolism and neurotransmitter cycling. However, the low sensitivity of direct 13 C MRS and high radiofrequency power requirements has limited 13 C MRS studies to predominantly data acquisition in large volumes of the occipital cortex. The purpose of this study is to develop an MRS technique for localized detection of 13 C-labeling of glutamate and glutamine in the human frontal lobe. METHODS: We used an indirect (1 H-[13 C]), proton-observed, carbon-edited MRS sequence (selPOCE) for detection of 13 C-labeled metabolites in relatively small volumes located in the frontal lobe at 4 T. The SelPOCE method allows for selective and separate detection of glutamate and glutamine resonances, which significantly overlap at magnetic field strengths used for clinical MRI. RESULTS: Phantom data illustrate how selPOCE can be tuned to selectively detect 13 C labeling in different metabolites. Three-dimensional specific absorption rate simulations of radiofrequency power deposition show that the selPOCE method operates comfortably within the global and local Food and Drug Administration specific absorption rate guidelines. In vivo selPOCE data are presented, which were acquired from a 45-mL volume in the frontal lobe of healthy subjects. The in vivo data show the time-dependent 13 C-labeling of glutamate and glutamine during intravenous infusion of [1-13 C]-glucose. Metrics describing spectral fitting quality of the glutamate and glutamine resonances are reported. CONCLUSIONS: The SelPOCE sequence allows the detection of 13 C-labeling in glutamate and glutamine from a relatively small volume in the human frontal lobe at low radiofrequency power requirements. Magn Reson Med 80:11-20, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Carbono/química , Lóbulo Frontal/diagnóstico por imagen , Ácido Glutámico/química , Glutamina/química , Espectroscopía de Resonancia Magnética/métodos , Adulto , Mapeo Encefálico , Femenino , Voluntarios Sanos , Humanos , Imagenología Tridimensional , Cinética , Masculino , Neuroimagen/métodos , Neurotransmisores/metabolismo , Seguridad del Paciente , Fantasmas de Imagen , Protones , Ondas de Radio , Adulto Joven
10.
NMR Biomed ; 31(9): e3949, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29985532

RESUMEN

Proton MRSI has great clinical potential for metabolic mapping of the healthy and pathological human brain. Unfortunately, the promise has not yet been fully achieved due to numerous technical challenges related to insufficient spectral quality caused by magnetic field inhomogeneity, insufficient RF transmit power and incomplete lipid suppression. Here a robust, novel method for lipid suppression in 1 H MRSI is presented. The method is based on 2D spatial localization of an elliptical region of interest using pulsed second-order spherical harmonic (SH) magnetic fields. A dedicated, high-amplitude second-order SH gradient setup was designed and constructed, containing coils to generate Z2, X2Y2 and XY magnetic fields. Simulations and phantom MRI results are used to demonstrate the principles of the method and illustrate the manifestation of chemical shift displacement. 1 H MRSI on human brain in vivo demonstrates high quality, robust suppression of extracranial lipids. The method allows a wide range of inner or outer volume selection or suppression and should find application in MRSI, reduced-field-of-view MRI and single-volume MRS.


Asunto(s)
Algoritmos , Lípidos/química , Imagen por Resonancia Magnética , Fantasmas de Imagen , Espectroscopía de Protones por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos
11.
Magn Reson Med ; 78(3): 828-835, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27670385

RESUMEN

PURPOSE: To develop 1 H-based MR detection of nicotinamide adenine dinucleotide (NAD+ ) in the human brain at 7T and validate the 1 H results with NAD+ detection based on 31 P-MRS. METHODS: 1 H-MR detection of NAD+ was achieved with a one-dimensional double-spin-echo method on a slice parallel to the surface coil transceiver. Perturbation of the water resonance was avoided through the use of frequency-selective excitation. 31 P-MR detection of NAD+ was performed with an unlocalized pulse-acquire sequence. RESULTS: Both 1 H- and 31 P-MRS allowed the detection of NAD+ signals on every subject in 16 min. Spectral fitting provided an NAD+ concentration of 107 ± 28 µM for 1 H-MRS and 367 ± 78 µM and 312 ± 65 µM for 31 P-MRS when uridine diphosphate glucose (UDPG) was excluded and included, respectively, as an overlapping signal. CONCLUSIONS: NAD+ detection by 1 H-MRS is a simple method that comes at the price of reduced NMR visibility. NAD+ detection by 31 P-MRS has near-complete NMR visibility, but it is complicated by spectral overlap with NADH and UDPG. Overall, the 1 H- and 31 P-MR methods both provide exciting opportunities to study NAD+ metabolism on human brain in vivo. © 2016 International Society for Magnetic Resonance in Medicine. Magn Reson Med 78:828-835, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Química Encefálica/fisiología , Encéfalo/diagnóstico por imagen , NAD/análisis , Adulto , Algoritmos , Encéfalo/metabolismo , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , NAD/química , NAD/metabolismo , Procesamiento de Señales Asistido por Computador
12.
NMR Biomed ; 29(3): 309-19, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26752688

RESUMEN

Solid tumors have an acidic extracellular pH (pHe ) but near neutral intracellular pH (pHi ). Because acidic pHe milieu is conducive to tumor growth and builds resistance to therapy, simultaneous mapping of pHe inside and outside the tumor (i.e., intratumoral-peritumoral pHe gradient) fulfills an important need in cancer imaging. We used Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), which utilizes shifts of non-exchangeable protons from macrocyclic chelates (e.g., 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) or DOTP(8-) ) complexed with paramagnetic thulium (Tm(3) (+) ) ion, to generate in vivo pHe maps in rat brains bearing 9L and RG2 tumors. Upon TmDOTP(5-) infusion, MRI identified the tumor boundary by enhanced water transverse relaxation and BIRDS allowed imaging of intratumoral-peritumoral pHe gradients. The pHe measured by BIRDS was compared with pHi measured with (31) P-MRS. In normal tissue, pHe was similar to pHi , but inside the tumor pHe was lower than pHi . While the intratumoral pHe was acidic for both tumor types, peritumoral pHe varied with tumor type. The intratumoral-peritumoral pHe gradient was much larger for 9L than RG2 tumors because in RG2 tumors acidic pHe was found in distal peritumoral regions. The increased presence of Ki-67 positive cells beyond the RG2 tumor border suggested that RG2 was more invasive than the 9L tumor. These results indicate that extensive acidic pHe beyond the tumor boundary correlates with tumor cell invasion. In summary, BIRDS has sensitivity to map the in vivo intratumoral-peritumoral pHe gradient, thereby creating preclinical applications in monitoring cancer therapeutic responses (e.g., with pHe -altering drugs). Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Glioma/diagnóstico por imagen , Glioma/metabolismo , Imagen por Resonancia Magnética/métodos , Animales , Técnicas Biosensibles , Línea Celular Tumoral , Espacio Extracelular/metabolismo , Concentración de Iones de Hidrógeno , Inmunohistoquímica , Masculino , Ratas Endogámicas F344
13.
Magn Reson Med ; 74(4): 903-14, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25264872

RESUMEN

PURPOSE: Carbon-13 ((13) C) magnetic resonance spectroscopy (MRS) has an intrinsically low NMR sensitivity that often leads to large acquisition volumes or long scan times. While the use of higher magnetic fields can overcome the sensitivity limitations, high radiofrequency (RF) power deposition associated with proton-decoupling limits the achievable gain. Two-dimensional (2D) heteronuclear single quantum coherence (HSQC) MRS is a method that uses the high chemical specificity of (13) C MRS while retaining the high sensitivity of (1) H detection. Due to the 2D nature of the method, proton-decoupled (13) C MR spectra can be obtained without the use of high-powered decoupling pulses. METHODS: A novel three-dimensional (3D) localized 2D HSQC method based on 3D STEAM localization is presented and implemented at 7T. The low RF power deposition of the method allows TR variation along the indirect dimension which, in combination with controlled aliasing, leads to an acceleration of 11.8 relative to a standard 2D NMR acquisition. RESULTS: Artifact-free, high-quality and high-sensitivity 2D HSQC spectra were obtained for all subjects in 19 min from a small (9 mL) volume placed in the leg adipose tissue. Complete proton decoupling was achieved along the indirect (13) C dimension despite the absence of broadband proton-decoupling pulses. The high chemical specificity along the indirect (13) C dimension allowed the detection of 19 unique resonances from which the lipids could be characterized in terms of saturation and omega-6/omega-3 fatty acid ratio. CONCLUSION: It has been demonstrated that high-quality 2D HSQC NMR spectra can be acquired from human adipose tissue at 7T. The HSQC method is methodologically simple and robust and is flexible regarding trade-offs between temporal and spectral resolution. 2D HSQC has a strong potential to become a default method in natural-abundance or (13) C-enriched studies of human metabolism in vivo.


Asunto(s)
Isótopos de Carbono/análisis , Imagen por Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Tejido Adiposo/química , Tejido Adiposo/metabolismo , Adulto , Isótopos de Carbono/metabolismo , Femenino , Humanos , Pierna/fisiología , Imagen por Resonancia Magnética/instrumentación , Masculino , Persona de Mediana Edad , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Fantasmas de Imagen , Procesamiento de Señales Asistido por Computador , Triglicéridos/química , Triglicéridos/metabolismo
14.
Front Cell Neurosci ; 17: 1130816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187610

RESUMEN

Introduction: There is a lack of robust metabolic imaging techniques that can be routinely applied to characterize lesions in patients with brain tumors. Here we explore in an animal model of glioblastoma the feasibility to detect uptake and metabolism of deuterated choline and describe the tumor-to-brain image contrast. Methods: RG2 cells were incubated with choline and the level of intracellular choline and its metabolites measured in cell extracts using high resolution 1H NMR. In rats with orthotopically implanted RG2 tumors deuterium metabolic imaging (DMI) was applied in vivo during, as well as 1 day after, intravenous infusion of 2H9-choline. In parallel experiments, RG2-bearing rats were infused with [1,1',2,2'-2H4]-choline and tissue metabolite extracts analyzed with high resolution 2H NMR to identify molecule-specific 2H-labeling in choline and its metabolites. Results: In vitro experiments indicated high uptake and fast phosphorylation of exogenous choline in RG2 cells. In vivo DMI studies revealed a high signal from the 2H-labeled pool of choline + metabolites (total choline, 2H-tCho) in the tumor lesion but not in normal brain. Quantitative DMI-based metabolic maps of 2H-tCho showed high tumor-to-brain image contrast in maps acquired both during, and 24 h after deuterated choline infusion. High resolution 2H NMR revealed that DMI data acquired during 2H-choline infusion consists of free choline and phosphocholine, while the data acquired 24 h later represent phosphocholine and glycerophosphocholine. Discussion: Uptake and metabolism of exogenous choline was high in RG2 tumors compared to normal brain, resulting in high tumor-to-brain image contrast on DMI-based metabolic maps. By varying the timing of DMI data acquisition relative to the start of the deuterated choline infusion, the metabolic maps can be weighted toward detection of choline uptake or choline metabolism. These proof-of-principle experiments highlight the potential of using deuterated choline combined with DMI to metabolically characterize brain tumors.

15.
medRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873422

RESUMEN

Deuterium Metabolic Imaging (DMI) is a novel method that can complement traditional anatomical magnetic resonance imaging (MRI) of the brain. DMI relies on the MR detection of metabolites that become labeled with deuterium (2H) after administration of a deuterated substrate and can provide images with highly specific metabolic information. However, clinical adoption of DMI is complicated by its relatively long scan time. Here, we demonstrate a strategy to interleave DMI data acquisition with MRI that results in a comprehensive neuro-imaging protocol without adding scan time. The interleaved MRI-DMI routine includes four essential clinical MRI scan types, namely T1-weighted MP-RAGE, FLAIR, T2-weighted Imaging (T2W) and susceptibility weighted imaging (SWI), interwoven with DMI data acquisition. Phantom and in vivo human brain data show that MR image quality, DMI sensitivity, as well as information content are preserved in the MRI-DMI acquisition method. The interleaved MRI-DMI technology provides full flexibility to upgrade traditional MRI protocols with DMI, adding unique metabolic information to existing types of anatomical image contrast, without extra scan time.

16.
Sci Transl Med ; 15(720): eadi1617, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37910601

RESUMEN

The morbidity associated with pediatric medulloblastoma, in particular in patients who develop leptomeningeal metastases, remains high in the absence of effective therapies. Administration of substances directly into the cerebrospinal fluid (CSF) is one approach to circumvent the blood-brain barrier and focus delivery of drugs to the site of tumor. However, high rates of CSF turnover prevent adequate drug accumulation and lead to rapid systemic clearance and toxicity. Here, we show that PLA-HPG nanoparticles, made with a single-emulsion, solvent evaporation process, can encapsulate talazoparib, a PARP inhibitor (BMN-673). These degradable polymer nanoparticles improve the therapeutic index when delivered intrathecally and lead to sustained drug retention in the tumor as measured with PET imaging and fluorescence microscopy. We demonstrate that administration of these particles into the CSF, alone or in combination with systemically administered temozolomide, is a highly effective therapy for tumor regression and prevention of leptomeningeal spread in xenograft mouse models of medulloblastoma. These results provide a rationale for harnessing nanoparticles for the delivery of drugs limited by brain penetration and therapeutic index and demonstrate important advantages in tolerability and efficacy for encapsulated drugs delivered locoregionally.


Asunto(s)
Antineoplásicos , Neoplasias Cerebelosas , Meduloblastoma , Nanopartículas , Niño , Humanos , Ratones , Animales , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Meduloblastoma/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Neoplasias Cerebelosas/tratamiento farmacológico , Líquido Cefalorraquídeo
17.
J Cereb Blood Flow Metab ; 43(5): 778-790, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36606595

RESUMEN

Recanalization therapy after acute ischemic stroke enables restoration of cerebral perfusion. However, a significant subset of patients has poor outcome, which may be caused by disruption of cerebral energy metabolism. To assess changes in glucose metabolism subacutely and chronically after recanalization, we applied two complementary imaging techniques, fluorodeoxyglucose (FDG) positron emission tomography (PET) and deuterium (2H) metabolic imaging (DMI), after 60-minute transient middle cerebral artery occlusion (tMCAO) in C57BL/6 mice. Glucose uptake, measured with FDG PET, was reduced at 48 hours after tMCAO and returned to baseline value after 11 days. DMI revealed effective glucose supply as well as elevated lactate production and reduced glutamate/glutamine synthesis in the lesion area at 48 hours post-tMCAO, of which the extent was dependent on stroke severity. A further decrease in oxidative metabolism was evident after 11 days. Immunohistochemistry revealed significant glial activation in and around the lesion, which may play a role in the observed metabolic profiles. Our findings indicate that imaging (altered) active glucose metabolism in and around reperfused stroke lesions can provide substantial information on (secondary) pathophysiological changes in post-ischemic brain tissue.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratones , Deuterio/metabolismo , Proyectos Piloto , Fluorodesoxiglucosa F18/metabolismo , Accidente Cerebrovascular Isquémico/patología , Ratones Endogámicos C57BL , Encéfalo/irrigación sanguínea , Tomografía de Emisión de Positrones , Infarto de la Arteria Cerebral Media/patología , Glucosa/metabolismo
18.
Am J Physiol Endocrinol Metab ; 302(3): E365-73, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22068603

RESUMEN

Lack of physical activity has been related to an increased risk of developing insulin resistance. This study aimed to assess the impact of chronic muscle deconditioning on whole body insulin sensitivity, muscle oxidative capacity, and intramyocellular lipid (IMCL) content in subjects with paraplegia. Nine subjects with paraplegia and nine able-bodied, lean controls were recruited. An oral glucose tolerance test was performed to assess whole body insulin sensitivity. IMCL content was determined both in vivo and in vitro using (1)H-magnetic resonance spectroscopy and fluorescence microscopy, respectively. Muscle biopsy samples were stained for succinate dehydrogenase (SDH) activity to measure muscle fiber oxidative capacity. Subcellular distributions of IMCL and SDH activity were determined by defining subsarcolemmal and intermyofibrillar areas on histological samples. SDH activity was 57 ± 14% lower in muscle fibers derived from subjects with paraplegia when compared with controls (P < 0.05), but IMCL content and whole body insulin sensitivity did not differ between groups. In muscle fibers taken from controls, both SDH activity and IMCL content were higher in the subsarcolemmal region than in the intermyofibrillar area. This typical subcellular SDH and IMCL distribution pattern was lost in muscle fibers collected from subjects with paraplegia and had changed toward a more uniform distribution. In conclusion, the lower metabolic demand in deconditioned muscle of subjects with paraplegia results in a significant decline in muscle fiber oxidative capacity and is accompanied by changes in the subcellular distribution patterns of SDH activity and IMCL. However, loss of muscle activity due to paraplegia is not associated with substantial lipid accumulation in skeletal muscle tissue.


Asunto(s)
Metabolismo de los Lípidos , Fibras Musculares Esqueléticas/metabolismo , Miofibrillas/metabolismo , Paraplejía/metabolismo , Succinato Deshidrogenasa/metabolismo , Adulto , Biopsia con Aguja , Índice de Masa Corporal , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Resistencia a la Insulina , Espectroscopía de Resonancia Magnética , Masculino , Mitocondrias Musculares/metabolismo , Actividad Motora , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/patología , Miofibrillas/enzimología , Miofibrillas/patología , Fosforilación Oxidativa , Paraplejía/patología , Paraplejía/fisiopatología , Transporte de Proteínas , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/patología , Músculo Cuádriceps/fisiopatología , Sarcolema/enzimología , Sarcolema/metabolismo , Sarcolema/patología
19.
Neurochem Res ; 37(11): 2597-612, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23104556

RESUMEN

The high in vivo flux of the glutamate/glutamine cycle puts a strong demand on the return of ammonia released by phosphate activated glutaminase from the neurons to the astrocytes in order to maintain nitrogen balance. In this paper we review several amino acid shuttles that have been proposed for balancing the nitrogen flows between neurons and astrocytes in the glutamate/glutamine cycle. All of these cycles depend on the directionality of glutamate dehydrogenase, catalyzing reductive glutamate synthesis (forward reaction) in the neuron in order to capture the ammonia released by phosphate activated glutaminase, while catalyzing oxidative deamination of glutamate (reverse reaction) in the astrocytes to release ammonia for glutamine synthesis. Reanalysis of results from in vivo experiments using (13)N and (15)N labeled ammonia and (15)N leucine in rats suggests that the maximum flux of the alanine/lactate or branched chain amino acid/branched chain amino acid transaminase shuttles between neurons and astrocytes are approximately 3-5 times lower than would be required to account for the ammonia transfer from neurons to astrocytes needed for glutamine synthesis (amide nitrogen) to sustain the glutamate/glutamine cycle. However, in the rat brain both the total ammonia fixation rate by glutamate dehydrogenase and the total branched chain amino acid transaminase activity are sufficient to support a branched chain amino acid/branched chain keto acid shuttle, as proposed by Hutson and coworkers, which would support the de novo synthesis of glutamine in the astrocyte to replace the ~20 % of neurotransmitter glutamate that is oxidized. A higher fraction of the nitrogen needs of total glutamate neurotransmitter cycling could be supported by hybrid cycles in which glutamate and tricarboxylic acid cycle intermediates act as a nitrogen shuttle. A limitation of all in vivo studies in animals conducted to date is that none have shown transfer of nitrogen for glutamine amide synthesis, either as free ammonia or via an amino acid from the neurons to the astrocytes. Future work will be needed, perhaps using methods for selectively labeling nitrogen in neurons, to conclusively establish the rate of amino acid nitrogen shuttles in vivo and their coupling to the glutamate/glutamine cycle.


Asunto(s)
Aminoácidos/metabolismo , Amoníaco/metabolismo , Astrocitos/metabolismo , Neuronas/metabolismo , Animales , Transporte Biológico , Humanos , Nitrógeno/metabolismo
20.
J Magn Reson ; 341: 107247, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35691241

RESUMEN

Gradient modulated RF pulses, especially gradient offset independent adiabaticity (GOIA) pulses, are increasingly gaining attention for high field clinical magnetic resonance spectroscopy and spectroscopic imaging (MRS/MRSI) due to the lower peak B1 amplitude and associated power demands achievable relative to its non-modulated adiabatic full passage counterparts. In this work we describe the development of two GOIA RF pulses: 1) A power efficient, 3.0 ms wideband uniform rate with smooth truncation (WURST) modulated RF pulse with 15 kHz bandwidth compatible with a clinically feasible peak B1 amplitude of 0.87 kHz (or 20 µT), and 2) A highly selective asymmetric 6.66 ms RF pulse with 20 kHz bandwidth designed to achieve a single-sided, fractional transition width of only 1.7%. Effects of potential asynchrony between RF and gradient-modulated (GM) waveforms for 3 ms GOIA-WURST RF pulses was evaluated by simulation and experimentally. Results demonstrate that a 20+ µs asynchrony between RF and GM functions substantially degrades inversion performance when using large RF offsets to achieve translation. A projection-based method is presented that allows a quick calibration of RF and GM asynchrony on pre-clinical/clinical MR systems. The asymmetric GOIA pulse was implemented within a multi-pulse OVS sequence to achieve power efficient, highly-selective, and B1 and T1-independent signal suppression for extracranial lipid suppression. The developed GOIA pulses were utilized with linear gradient modulation (X, Y, Z gradient fields), and with second-order-field modulations (Z2, X2Y2 gradient fields) to provide elliptically-shaped regions-of-interest for MRS and MRSI acquisitions. Both described GOIA-RF pulses have substantial clinical value; specifically, the 3.0 ms GOIA-WURST pulse is beneficial to realize short TE sLASER localized proton MRS/MRSI sequences, and the asymmetric GOIA RF pulse has applications in highly selective outer volume signal suppression to allow interrogation of tissue proximal to extracranial lipids with full-intensity.


Asunto(s)
Imagen por Resonancia Magnética , Procesamiento de Señales Asistido por Computador , Encéfalo/metabolismo , Frecuencia Cardíaca , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA