Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35161458

RESUMEN

Availability of efficient development tools for data-rich IoT applications is becoming ever more important. Such tools should support cross-platform deployment and seamless and effective applicability in a variety of domains. In this view, we assessed the versatility of an edge-to-cloud system featuring Measurify, a framework for managing smart things. The framework exposes to developers a set of measurement-oriented resources that can be used in different contexts. The tool has been assessed in the development of end-to-end IoT applications in six Electronic and Information Technologies Engineering BSc theses that have highlighted the potential of such a system, both from a didactic and a professional point of view. The main design abstractions of the system (i.e., generic sensor configuration, simple language with chainable operations for processing data on the edge, seamless WiFi/GSM communication) allowed developers to be productive and focus on the application requirements and the high-level design choices needed to define the edge system (microcontroller and its sensors), avoiding the large set-up times necessary to start a solution from scratch. The experience also highlighted some usability issues that will be addressed in an upcoming release of the system.


Asunto(s)
Ecosistema
2.
Sensors (Basel) ; 21(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065354

RESUMEN

Internet of Things technologies are spurring new types of instructional games, namely reality-enhanced serious games (RESGs), that support training directly in the field. This paper investigates a key feature of RESGs, i.e., user performance evaluation using real data, and studies an application of RESGs for promoting fuel-efficient driving, using fuel consumption as an indicator of driver performance. In particular, we propose a reference model for supporting a novel smart sensing dataflow involving the combination of two modules, based on machine learning, to be employed in RESGs in parallel and in real-time. The first module concerns quantitative performance assessment, while the second one targets verbal recommendation. For the assessment module, we compared the performance of three well-established machine learning algorithms: support vector regression, random forest and artificial neural networks. The experiments show that random forest achieves a slightly better performance assessment correlation than the others but requires a higher inference time. The instant recommendation module, implemented using fuzzy logic, triggers advice when inefficient driving patterns are detected. The dataflow has been tested with data from the enviroCar public dataset, exploiting on board diagnostic II (OBD II) standard vehicular interface information. The data covers various driving environments and vehicle models, which makes the system robust for real-world conditions. The results show the feasibility and effectiveness of the proposed approach, attaining a high estimation correlation (R2 = 0.99, with random forest) and punctual verbal feedback to the driver. An important word of caution concerns users' privacy, as the modules rely on sensitive personal data, and provide information that by no means should be misused.

3.
Sensors (Basel) ; 20(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353106

RESUMEN

This Editorial analyzes the manuscripts accepted, after a careful peer-reviewed process, for the Special Issue "Applications in Electronics Pervading Industry, Environment and Society-Sensing Systems and Pervasive Intelligence" of the Sensors MDPI journal [...].

4.
Sensors (Basel) ; 20(9)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380766

RESUMEN

This paper presents the Edge Learning Machine (ELM), a machine learning framework for edge devices, which manages the training phase on a desktop computer and performs inferences on microcontrollers. The framework implements, in a platform-independent C language, three supervised machine learning algorithms (Support Vector Machine (SVM) with a linear kernel, k-Nearest Neighbors (K-NN), and Decision Tree (DT)), and exploits STM X-Cube-AI to implement Artificial Neural Networks (ANNs) on STM32 Nucleo boards. We investigated the performance of these algorithms on six embedded boards and six datasets (four classifications and two regression). Our analysis-which aims to plug a gap in the literature-shows that the target platforms allow us to achieve the same performance score as a desktop machine, with a similar time latency. ANN performs better than the other algorithms in most cases, with no difference among the target devices. We observed that increasing the depth of an NN improves performance, up to a saturation level. k-NN performs similarly to ANN and, in one case, even better, but requires all the training sets to be kept in the inference phase, posing a significant memory demand, which can be afforded only by high-end edge devices. DT performance has a larger variance across datasets. In general, several factors impact performance in different ways across datasets. This highlights the importance of a framework like ELM, which is able to train and compare different algorithms. To support the developer community, ELM is released on an open-source basis.

5.
Sensors (Basel) ; 20(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260831

RESUMEN

While extracting meaningful information from big data is getting relevance, literature lacks information on how to handle sensitive data by different project partners in order to collectively answer research questions (RQs), especially on impact assessment of new automated driving technologies. This paper presents the application of an established reference piloting methodology and the consequent development of a coherent, robust workflow. Key challenges include ensuring methodological soundness and data validity while protecting partners' intellectual property. The authors draw on their experiences in a 34-partner project aimed at assessing the impact of advanced automated driving functions, across 10 European countries. In the first step of the workflow, we captured the quantitative requirements of each RQ in terms of the relevant data needed from the tests. Most of the data come from vehicular sensors, but subjective data from questionnaires are processed as well. Next, we set up a data management process involving several partners (vehicle manufacturers, research institutions, suppliers and developers), with different perspectives and requirements. Finally, we deployed the system so that it is fully integrated within the project big data toolchain and usable by all the partners. Based on our experience, we highlight the importance of the reference methodology to theoretically inform and coherently manage all the steps of the project and the need for effective and efficient tools, in order to support the everyday work of all the involved research teams, from vehicle manufacturers to data analysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA