Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biomed Sci ; 28(1): 61, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503512

RESUMEN

BACKGROUND: The cell adhesion molecule transmembrane and immunoglobulin (Ig) domain containing1 (TMIGD1) is a novel tumor suppressor that plays important roles in regulating cell-cell adhesion, cell proliferation and cell cycle. However, the mechanisms of TMIGD1 signaling are not yet fully elucidated. RESULTS: TMIGD1 binds to the ERM family proteins moesin and ezrin, and an evolutionarily conserved RRKK motif on the carboxyl terminus of TMIGD1 mediates the interaction of TMIGD1 with the N-terminal ERM domains of moesin and ezrin. TMIGD1 governs the apical localization of moesin and ezrin, as the loss of TMIGD1 in mice altered apical localization of moesin and ezrin in epithelial cells. In cell culture, TMIGD1 inhibited moesin-induced filopodia-like protrusions and cell migration. More importantly, TMIGD1 stimulated the Lysine (K40) acetylation of α-tubulin and promoted mitotic spindle organization and CRISPR/Cas9-mediated knockout of moesin impaired the TMIGD1-mediated acetylation of α-tubulin and filamentous (F)-actin organization. CONCLUSIONS: TMIGD1 binds to moesin and ezrin, and regulates their cellular localization. Moesin plays critical roles in TMIGD1-dependent acetylation of α-tubulin, mitotic spindle organization and cell migration. Our findings offer a molecular framework for understanding the complex functional interplay between TMIGD1 and the ERM family proteins in the regulation of cell adhesion and mitotic spindle assembly, and have wide-ranging implications in physiological and pathological processes such as cancer progression.


Asunto(s)
Movimiento Celular , Glicoproteínas de Membrana/genética , Proteínas de Microfilamentos/genética , Tubulina (Proteína)/metabolismo , Acetilación , Animales , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo
2.
Brain Commun ; 2(1): fcaa047, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954300

RESUMEN

Parkinson's disease is the second most common human neurodegenerative disease. Motor control impairment represents a key clinical hallmark and primary clinical symptom of the disease, which is further characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of α-synuclein aggregations. We have identified major intrinsically disordered NOTCH2-associated receptor 2 encoded by KIAA1024L, a previously uncharacterized protein that is highly conserved in humans and other species. In this study, we demonstrate that major intrinsically disordered NOTCH2-associated receptor 2 expression is significantly down-regulated in the frontal lobe brain of patients with Lewy body dementia. Major intrinsically disordered NOTCH2-associated receptor 2 is predominantly expressed in brain tissue and is particularly prominent in the midbrain. Major intrinsically disordered NOTCH2-associated receptor 2 interacts with neurogenic locus notch homologue protein 2 and is localized at the endoplasmic reticulum compartments. We generated major intrinsically disordered NOTCH2-associated receptor 2 knockout mouse and demonstrated that the loss of major intrinsically disordered NOTCH2-associated receptor 2 in mouse results in severe motor deficits such as rigidity and bradykinesia, gait abnormalities, reduced spontaneous locomotor and exploratory behaviour, symptoms that are highly similar to those observed in human Parkinson's spectrum disorders. Analysis of the major intrinsically disordered NOTCH2-associated receptor 2 knockout mice brain revealed significant anomalies in neuronal function and appearance including the loss of tyrosine hydroxylase-positive neurons in the pars compacta, which was accompanied by an up-regulation in α-synuclein protein expression. Taken together, these data demonstrate a previously unknown function for major intrinsically disordered NOTCH2-associated receptor 2 in the pathogenesis of Parkinson's spectrum disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA