Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Commun Signal ; 11: 55, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23915343

RESUMEN

mTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to mTOR protein. An influence of PLD on muscle cell size could thus be suspected. We explored the consequences of altered expression and activity of PLD isoforms in differentiated L6 myotubes. Inhibition or down-regulation of the PLD1 isoform markedly decreased myotube size and muscle specific protein content. Conversely, PLD1 overexpression induced muscle cell hypertrophy, both in vitro in myotubes and in vivo in mouse gastrocnemius. In the presence of atrophy-promoting dexamethasone, PLD1 overexpression or addition of exogenous PA protected myotubes against atrophy. Similarly, exogenous PA protected myotubes against TNFα-induced atrophy. Moreover, the modulation of PLD expression or activity in myotubes showed that PLD1 negatively regulates the expression of factors involved in muscle protein degradation, such as the E3-ubiquitin ligases Murf1 and Atrogin-1, and the Foxo3 transcription factor. Inhibition of mTOR by PP242 abolished the positive effects of PLD1 on myotubes, whereas modulating PLD influenced the phosphorylation of both S6K1 and Akt, which are respectively substrates of mTORC1 and mTORC2 complexes. These observations suggest that PLD1 acts through the activation of both mTORC1 and mTORC2 to induce positive trophic effects on muscle cells. This pathway may offer interesting therapeutic potentialities in the treatment of muscle wasting.


Asunto(s)
Complejos Multiproteicos/metabolismo , Fibras Musculares Esqueléticas/citología , Fosfolipasa D/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Tamaño de la Célula , Dexametasona , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos BALB C , Atrofia Muscular/inducido químicamente , Atrofia Muscular/metabolismo , Ácidos Fosfatidicos/farmacología , Factor de Necrosis Tumoral alfa
2.
PLoS One ; 9(1): e84153, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24392111

RESUMEN

Exosomes are nanometer-sized microvesicles formed in multivesicular bodies (MVBs) during endosome maturation. Exosomes are released from cells into the microenvironment following fusion of MVBs with the plasma membrane. During the last decade, skeletal muscle-secreted proteins have been identified with important roles in intercellular communications. To investigate whether muscle-derived exosomes participate in this molecular dialog, we determined and compared the protein contents of the exosome-like vesicles (ELVs) released from C2C12 murine myoblasts during proliferation (ELV-MB), and after differentiation into myotubes (ELV-MT). Using a proteomic approach combined with electron microscopy, western-blot and bioinformatic analyses, we compared the protein repertoires within ELV-MB and ELV-MT. We found that these vesicles displayed the classical properties of exosomes isolated from other cell types containing components of the ESCRT machinery of the MVBs, as well as numerous tetraspanins. Specific muscle proteins were also identified confirming that ELV composition also reflects their muscle origin. Furthermore quantitative analysis revealed stage-preferred expression of 31 and 78 proteins in ELV-MB and ELV-MT respectively. We found that myotube-secreted ELVs, but not ELV-MB, reduced myoblast proliferation and induced differentiation, through, respectively, the down-regulation of Cyclin D1 and the up-regulation of myogenin. We also present evidence that proteins from ELV-MT can be incorporated into myoblasts by using the GFP protein as cargo within ELV-MT. Taken together, our data provide a useful database of proteins from C2C12-released ELVs throughout myogenesis and reveals the importance of exosome-like vesicles in skeletal muscle biology.


Asunto(s)
Exosomas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Proteoma , Proteómica , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/ultraestructura , Exosomas/ultraestructura , Ratones , Mioblastos/citología , Transporte de Proteínas , Proteómica/métodos
3.
Skelet Muscle ; 2(1): 2, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22257771

RESUMEN

BACKGROUND: Muscle atrophy associated with various pathophysiological conditions represents a major health problem, because of its contribution to the deterioration of patient status and its effect on mortality. Although the involvement of pro-inflammatory cytokines in this process is well recognized, the role of sphingolipid metabolism alterations induced by the cytokines has received little attention. RESULTS: We addressed this question both in vitro using differentiated myotubes treated with TNF-α, and in vivo in a murine model of tumor-induced cachexia. Myotube atrophy induced by TNF-α was accompanied by a substantial increase in cell ceramide levels, and could be mimicked by the addition of exogenous ceramides. It could be prevented by the addition of ceramide-synthesis inhibitors that targeted either the de novo pathway (myriocin), or the sphingomyelinases (GW4869 and 3-O-methylsphingomyelin). In the presence of TNF-α, ceramide-synthesis inhibitors significantly increased protein synthesis and decreased proteolysis. In parallel, they lowered the expression of both the Atrogin-1 and LC3b genes, involved in muscle protein degradation by proteasome and in autophagic proteolysis, respectively, and increased the proportion of inactive, phosphorylated Foxo3 transcription factor. Furthermore, these inhibitors increased the expression and/or phosphorylation levels of key factors regulating protein metabolism, including phospholipase D, an activator of mammalian target of rapamycin (mTOR), and the mTOR substrates S6K1 and Akt. In vivo, C26 carcinoma implantation induced a substantial increase in muscle ceramide, together with drastic muscle atrophy. Treatment of the animals with myriocin reduced the expression of the atrogenes Foxo3 and Atrogin-1, and partially protected muscle tissue from atrophy. CONCLUSIONS: Ceramide accumulation induced by TNF-α or tumor development participates in the mechanism of muscle-cell atrophy, and sphingolipid metabolism is a logical target for pharmacological or nutritional interventions aiming at preserving muscle mass in pathological situations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA