Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Neurosci ; 41(5): 813-822, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33431633

RESUMEN

The sensory and cognitive abilities of the mammalian neocortex are underpinned by intricate columnar and laminar circuits formed from an array of diverse neuronal populations. One approach to determining how interactions between these circuit components give rise to complex behavior is to investigate the rules by which cortical circuits are formed and acquire functionality during development. This review summarizes recent research on the development of the neocortex, from genetic determination in neural stem cells through to the dynamic role that specific neuronal populations play in the earliest circuits of neocortex, and how they contribute to emergent function and cognition. While many of these endeavors take advantage of model systems, consideration will also be given to advances in our understanding of activity in nascent human circuits. Such cross-species perspective is imperative when investigating the mechanisms underlying the dysfunction of early neocortical circuits in neurodevelopmental disorders, so that one can identify targets amenable to therapeutic intervention.


Asunto(s)
Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Red Nerviosa/citología , Red Nerviosa/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neuronas/fisiología , Animales , Humanos , Lógica
3.
Mol Psychiatry ; 25(10): 2373-2391, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31501511

RESUMEN

Cocaine-associated memories are critical drivers of relapse in cocaine-dependent individuals that can be evoked by exposure to cocaine or stress. Whether these environmental stimuli recruit similar molecular and circuit-level mechanisms to promote relapse remains largely unknown. Here, using cocaine- and stress-primed reinstatement of cocaine conditioned place preference to model drug-associated memories, we find that cocaine drives reinstatement by increasing the duration that mice spend in the previously cocaine-paired context whereas stress increases the number of entries into this context. Importantly, both forms of reinstatement require Cav1.2 L-type Ca2+ channels (LTCCs) in cells of the prelimbic cortex that project to the nucleus accumbens core (PrL→NAcC). Utilizing fiber photometry to measure circuit activity in vivo in conjunction with the LTCC blocker, isradipine, we find that LTCCs drive differential recruitment of the PrL→ NAcC pathway during cocaine- and stress-primed reinstatement. While cocaine selectively activates PrL→NAcC cells prior to entry into the cocaine-paired chamber, a measure that is predictive of duration in that chamber, stress increases persistent activity of this projection, which correlates with entries into the cocaine-paired chamber. Using projection-specific chemogenetic manipulations, we show that PrL→NAcC activity is required for both cocaine- and stress-primed reinstatement, and that activation of this projection in Cav1.2-deficient mice restores reinstatement. These data indicate that LTCCs are a common mediator of cocaine- and stress-primed reinstatement. However, they engage different patterns of behavior and PrL→NAcC projection activity depending on the environmental stimuli. These findings establish a framework to further study how different environmental experiences can drive relapse, and supports further exploration of isradipine, an FDA-approved LTCC blocker, as a potential therapeutic for the prevention of relapse in cocaine-dependent individuals.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Cocaína/farmacología , Cuerpo Estriado/efectos de los fármacos , Lóbulo Frontal/efectos de los fármacos , Memoria/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Estrés Psicológico/psicología , Animales , Trastornos Relacionados con Cocaína/prevención & control , Cuerpo Estriado/citología , Lóbulo Frontal/citología , Isradipino/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/citología , Núcleo Accumbens/efectos de los fármacos
4.
Nature ; 472(7343): 351-5, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21460837

RESUMEN

Electrical activity has been shown to regulate development in a variety of species and in various structures, including the retina, spinal cord and cortex. Within the mammalian cortex specifically, the development of dendrites and commissural axons in pyramidal cells is activity-dependent. However, little is known about the developmental role of activity in the other major cortical population of neurons, the GABA-producing interneurons. These neurons are morphologically and functionally heterogeneous and efforts over the past decade have focused on determining the mechanisms that contribute to this diversity. It was recently discovered that 30% of all cortical interneurons arise from a relatively novel source within the ventral telencephalon, the caudal ganglionic eminence (CGE). Owing to their late birth date, these interneurons populate the cortex only after the majority of other interneurons and pyramidal cells are already in place and have started to functionally integrate. Here we demonstrate in mice that for CGE-derived reelin (Re)-positive and calretinin (Cr)-positive (but not vasoactive intestinal peptide (VIP)-positive) interneurons, activity is essential before postnatal day 3 for correct migration, and that after postnatal day 3, glutamate-mediated activity controls the development of their axons and dendrites. Furthermore, we show that the engulfment and cell motility 1 gene (Elmo1), a target of the transcription factor distal-less homeobox 1 (Dlx1), is selectively expressed in Re(+) and Cr(+) interneurons and is both necessary and sufficient for activity-dependent interneuron migration. Our findings reveal a selective requirement for activity in shaping the cortical integration of specific neuronal subtypes.


Asunto(s)
Movimiento Celular , Corteza Cerebral/citología , Interneuronas/citología , Interneuronas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Calbindina 2 , Moléculas de Adhesión Celular Neuronal/metabolismo , Movimiento Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interneuronas/efectos de los fármacos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Embarazo , Células Piramidales/citología , Células Piramidales/metabolismo , Receptores Ionotrópicos de Glutamato/antagonistas & inhibidores , Receptores Ionotrópicos de Glutamato/metabolismo , Proteína Reelina , Proteína G de Unión al Calcio S100/metabolismo , Serina Endopeptidasas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
5.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36993710

RESUMEN

Attention is required for most higher-order cognitive functions. Prior studies have revealed functional roles for the prefrontal cortex and its extended circuits to enabling attention, but the underlying molecular processes and their impacts on cellular and circuit function remain poorly understood. To develop insights, we here took an unbiased forward genetics approach to identify single genes of large effect on attention. We studied 200 genetically diverse mice on measures of pre-attentive processing and through genetic mapping identified a small locus on chromosome 13 (95%CI: 92.22-94.09 Mb) driving substantial variation (19%) in this trait. Further characterization of the locus revealed a causative gene, Homer1, encoding a synaptic protein, where down-regulation of its short isoforms in prefrontal cortex (PFC) during early postnatal development led to improvements in multiple measures of attention in the adult. Subsequent mechanistic studies revealed that prefrontal Homer1 down-regulation is associated with GABAergic receptor up-regulation in those same cells. This enhanced inhibitory influence, together with dynamic neuromodulatory coupling, led to strikingly low PFC activity at baseline periods of the task but targeted elevations at cue onset, predicting short-latency correct choices. Notably high-Homer1, low-attentional performers, exhibited uniformly elevated PFC activity throughout the task. We thus identify a single gene of large effect on attention - Homer1 - and find that it improves prefrontal inhibitory tone and signal-to-noise (SNR) to enhance attentional performance. A therapeutic strategy focused on reducing prefrontal activity and increasing SNR, rather than uniformly elevating PFC activity, may complement the use of stimulants to improve attention.

6.
J Neurosci ; 32(49): 17690-705, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23223290

RESUMEN

Although previous work identified transcription factors crucial for the specification and migration of parvalbumin (PV)-expressing and somatostatin (SST)-expressing interneurons, the intrinsic factors required for the terminal differentiation, connectivity, and survival of these cell types remain uncharacterized. Here we demonstrate that, within subpopulations of cortical interneurons, Satb1 (special AT-rich binding protein) promotes terminal differentiation, connectivity, and survival in interneurons that express PV and SST. We find that conditional removal of Satb1 in mouse interneurons results in the loss of a majority of SST-expressing cells across all cortical layers, as well as some PV-expressing cells in layers IV and VI, by postnatal day 21. SST-expressing cells initially migrate to the cortex in Satb1 mutant mice, but receive reduced levels of afferent input and begin to die during the first postnatal week. Electrophysiological characterization indicates that loss of Satb1 function in interneurons results in a loss of functional inhibition of excitatory principal cells. These data suggest that Satb1 is required for medial ganglionic eminence-derived interneuron differentiation, connectivity, and survival.


Asunto(s)
Diferenciación Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Interneuronas/fisiología , Proteínas de Unión a la Región de Fijación a la Matriz/fisiología , Terminales Presinápticos/fisiología , Animales , Ondas Encefálicas/fisiología , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Interneuronas/citología , Interneuronas/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/fisiología , Parvalbúminas/metabolismo , Terminales Presinápticos/metabolismo , Somatostatina/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
7.
Neuron ; 111(2): 256-274.e10, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36446382

RESUMEN

Dysfunction of gamma-aminobutyric acid (GABA)ergic circuits is strongly associated with neurodevelopmental disorders. However, it is unclear how genetic predispositions impact circuit assembly. Using in vivo two-photon and widefield calcium imaging in developing mice, we show that Gabrb3, a gene strongly associated with autism spectrum disorder (ASD) and Angelman syndrome (AS), is enriched in contralaterally projecting pyramidal neurons and is required for inhibitory function. We report that Gabrb3 ablation leads to a developmental decrease in GABAergic synapses, increased local network synchrony, and long-lasting enhancement in functional connectivity of contralateral-but not ipsilateral-pyramidal neuron subtypes. In addition, Gabrb3 deletion leads to increased cortical response to tactile stimulation at neonatal stages. Using human transcriptomics and neuroimaging datasets from ASD subjects, we show that the spatial distribution of GABRB3 expression correlates with atypical connectivity in these subjects. Our studies reveal a requirement for Gabrb3 during the emergence of interhemispheric circuits for sensory processing.


Asunto(s)
Trastorno del Espectro Autista , Ratones , Humanos , Animales , Trastorno del Espectro Autista/genética , Corteza Somatosensorial , Células Piramidales/fisiología , Sinapsis , Tacto , Receptores de GABA-A/genética
8.
Neuron ; 57(2): 217-31, 2008 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-18215620

RESUMEN

The fidelity with which spinal motor neurons innervate their limb target muscles helps to coordinate motor behavior, but the mechanisms that determine precise patterns of nerve-muscle connectivity remain obscure. We show that Nkx6 proteins, a set of Hox-regulated homeodomain transcription factors, are expressed by motor pools soon after motor neurons leave the cell cycle, before the formation of muscle nerve side branches in the limb. Using mouse genetics, we show that the status of Nkx6.1 expression in certain motor neuron pools regulates muscle nerve formation, and the pattern of innervation of individual muscles. Our findings provide genetic evidence that neurons within motor pools possess an early transcriptional identity that controls target muscle specificity.


Asunto(s)
Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Neuronas Motoras/fisiología , Músculo Esquelético/inervación , Médula Espinal/citología , Factores de Edad , Animales , Embrión de Pollo , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/metabolismo , Miembro Posterior/embriología , Miembro Posterior/inervación , Proteínas de Homeodominio/genética , Peroxidasa de Rábano Silvestre/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Desnervación Muscular/métodos , Músculo Esquelético/embriología , Mutación , Proteínas del Tejido Nervioso/metabolismo , Médula Espinal/embriología
10.
Front Neural Circuits ; 16: 866999, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463203

RESUMEN

Sensory information is transduced into electrical signals in the periphery by specialized sensory organs, which relay this information to the thalamus and subsequently to cortical primary sensory areas. In the cortex, microcircuits constituted by interconnected pyramidal cells and inhibitory interneurons, distributed throughout the cortical column, form the basic processing units of sensory information underlying sensation. In the mouse, these circuits mature shortly after birth. In the first postnatal week cortical activity is characterized by highly synchronized spontaneous activity. While by the second postnatal week, spontaneous activity desynchronizes and sensory influx increases drastically upon eye opening, as well as with the onset of hearing and active whisking. This influx of sensory stimuli is fundamental for the maturation of functional properties and connectivity in neurons allocated to sensory cortices. In the subsequent developmental period, spanning the first five postnatal weeks, sensory circuits are malleable in response to sensory stimulation in the so-called critical periods. During these critical periods, which vary in timing and duration across sensory areas, perturbations in sensory experience can alter cortical connectivity, leading to long-lasting modifications in sensory processing. The recent advent of intersectional genetics, in vivo calcium imaging and single cell transcriptomics has aided the identification of circuit components in emergent networks. Multiple studies in recent years have sought a better understanding of how genetically-defined neuronal subtypes regulate circuit plasticity and maturation during development. In this review, we discuss the current literature focused on postnatal development and critical periods in the primary auditory (A1), visual (V1), and somatosensory (S1) cortices. We compare the developmental trajectory among the three sensory areas with a particular emphasis on interneuron function and the role of inhibitory circuits in cortical development and function.


Asunto(s)
Interneuronas , Neuronas , Animales , Interneuronas/fisiología , Ratones , Neurogénesis , Neuronas/fisiología , Lóbulo Parietal , Células Piramidales
11.
Front Neural Circuits ; 15: 747724, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690708

RESUMEN

Neuronal activity profoundly shapes the maturation of developing neurons. However, technical limitations have hampered the ability to capture the progression of activity patterns in genetically defined neuronal populations. This task is particularly daunting given the substantial diversity of pyramidal cells and interneurons in the neocortex. A hallmark in the development of this neuronal diversity is the participation in network activity that regulates circuit assembly. Here, we describe detailed methodology on imaging neuronal cohorts longitudinally throughout postnatal stages in the mouse somatosensory cortex. To capture neuronal activity, we expressed the genetically encoded calcium sensor GCaMP6s in three distinct interneuron populations, the 5HT3aR-expressing layer 1 (L1) interneurons, SST interneurons, and VIP interneurons. We performed cranial window surgeries as early as postnatal day (P) 5 and imaged the same cohort of neurons in un-anesthetized mice from P6 to P36. This Longitudinal two-photon imaging preparation allows the activity of single neurons to be tracked throughout development as well as plasticity induced by sensory experience and learning, opening up avenues of research to answer fundamental questions in neural development in vivo.


Asunto(s)
Calcio , Neocórtex , Animales , Interneuronas , Ratones , Neuronas , Células Piramidales
12.
Neuroscience ; 466: 298-309, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33887384

RESUMEN

Across mammalian species, patterned activity in neural populations is a prominent feature of developing sensory cortices. Numerous studies have long appreciated the diversity of these patterns, characterizing their differences in spatial and temporal dynamics. In the murine somatosensory cortex, neuronal co-activation is thought to guide the formation of sensory maps and prepare the cortex for sensory processing after birth. While pioneering studies deftly utilized slice electrophysiology and unit recordings to characterize correlated activity, a detailed understanding of the underlying circuits remains poorly understood. More recently, advances in in vivo calcium imaging in awake mouse pups and increasing genetic tractability of neuronal types have allowed unprecedented manipulation of circuit components at select developmental timepoints. These novel approaches have proven fundamental in uncovering the identity of neurons engaged in correlated activity during development. In particular, recent studies have highlighted interneurons as key in refining the spatial extent and temporal progression of patterned activity. Here, we discuss how emergent synchronous activity across the first postnatal weeks is shaped by underlying gamma aminobutyric acid (GABA)ergic contributors in the somatosensory cortex. Further, the importance of participation in specific activity patterns per se for neuronal maturation and perdurance will be of particular highlight in this survey of recent literature. Finally, we underscore how aberrant neuronal synchrony and disrupted inhibitory interneuron activity underlie sensory perturbations in neurodevelopmental disorders, particularly Autism Spectrum Disorders (ASDs), emphasizing the importance of future investigative approaches that incorporate the spatiotemporal features of patterned activity alongside the cellular components to probe disordered circuit assembly.


Asunto(s)
Trastorno del Espectro Autista , Corteza Somatosensorial , Animales , Interneuronas , Ratones , Neurogénesis , Neuronas
13.
Neuron ; 105(1): 93-105.e4, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31780328

RESUMEN

The developmental journey of cortical interneurons encounters several activity-dependent milestones. During the early postnatal period in developing mice, GABAergic neurons are transient preferential recipients of thalamic inputs and undergo activity-dependent migration arrest, wiring, and programmed cell-death. Despite their importance for the emergence of sensory experience and the role of activity in their integration into cortical networks, the collective dynamics of GABAergic neurons during that neonatal period remain unknown. Here, we study coordinated activity in GABAergic cells of the mouse barrel cortex using in vivo calcium imaging. We uncover a transient structure in GABAergic population dynamics that disappears in a sensory-dependent process. Its building blocks are anatomically clustered GABAergic assemblies mostly composed by prospective parvalbumin-expressing cells. These progressively widen their territories until forming a uniform perisomatic GABAergic network. Such transient patterning of GABAergic activity is a functional scaffold that links the cortex to the external world prior to active exploration. VIDEO ABSTRACT.


Asunto(s)
Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Corteza Somatosensorial/crecimiento & desarrollo , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Animales , Animales Recién Nacidos , Calcio/metabolismo , Femenino , Glutamato Descarboxilasa/genética , Masculino , Ratones , Ratones Transgénicos , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/fisiología , Neuroimagen , Parvalbúminas/metabolismo , Privación Sensorial/fisiología , Corteza Somatosensorial/metabolismo , Somatostatina/metabolismo , Vibrisas/patología
14.
Neuron ; 105(1): 75-92.e5, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31780329

RESUMEN

During neonatal development, sensory cortices generate spontaneous activity patterns shaped by both sensory experience and intrinsic influences. How these patterns contribute to the assembly of neuronal circuits is not clearly understood. Using longitudinal in vivo calcium imaging in un-anesthetized mouse pups, we show that spatially segregated functional assemblies composed of interneurons and pyramidal cells are prominent in the somatosensory cortex by postnatal day (P) 7. Both reduction of GABA release and synaptic inputs onto pyramidal cells erode the emergence of functional topography, leading to increased network synchrony. This aberrant pattern effectively blocks interneuron apoptosis, causing increased survival of parvalbumin and somatostatin interneurons. Furthermore, the effect of GABA on apoptosis is mediated by inputs from medial ganglionic eminence (MGE)-derived but not caudal ganglionic eminence (CGE)-derived interneurons. These findings indicate that immature MGE interneurons are fundamental for shaping GABA-driven activity patterns that balance the number of interneurons integrating into maturing cortical networks.


Asunto(s)
Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Corteza Somatosensorial/fisiología , Animales , Apoptosis/fisiología , Supervivencia Celular/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Neuronas GABAérgicas/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/metabolismo , Masculino , Eminencia Media/fisiología , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Vías Nerviosas/fisiología , Neurogénesis/fisiología , Parvalbúminas/metabolismo , Células Piramidales/metabolismo , Células Piramidales/fisiología , Corteza Somatosensorial/crecimiento & desarrollo , Somatostatina/metabolismo , Potenciales Sinápticos/fisiología , Ácido gamma-Aminobutírico/metabolismo
15.
Nat Commun ; 11(1): 319, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949159

RESUMEN

Optimal functioning of neuronal networks is critical to the complex cognitive processes of memory and executive function that deteriorate in Alzheimer's disease (AD). Here we use cellular and animal models as well as human biospecimens to show that AD-related stressors mediate global disturbances in dynamic intra- and inter-neuronal networks through pathologic rewiring of the chaperome system into epichaperomes. These structures provide the backbone upon which proteome-wide connectivity, and in turn, protein networks become disturbed and ultimately dysfunctional. We introduce the term protein connectivity-based dysfunction (PCBD) to define this mechanism. Among most sensitive to PCBD are pathways with key roles in synaptic plasticity. We show at cellular and target organ levels that network connectivity and functional imbalances revert to normal levels upon epichaperome inhibition. In conclusion, we provide proof-of-principle to propose AD is a PCBDopathy, a disease of proteome-wide connectivity defects mediated by maladaptive epichaperomes.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Proteoma/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Mapeo Encefálico , Disfunción Cognitiva/metabolismo , Función Ejecutiva/fisiología , Femenino , Hipocampo/patología , Humanos , Masculino , Memoria/fisiología , Ratones , Vías Nerviosas
16.
Neuron ; 48(6): 949-64, 2005 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-16364899

RESUMEN

Neuropilins, secreted semaphorin coreceptors, are expressed in discrete populations of spinal motor neurons, suggesting they provide critical guidance information for the establishment of functional motor circuitry. We show here that motor axon growth and guidance are impaired in the absence of Sema3A-Npn-1 signaling. Motor axons enter the limb precociously, showing that Sema3A controls the timing of motor axon in-growth to the limb. Lateral motor column (LMC) motor axons within spinal nerves are defasciculated as they grow toward the limb and converge in the plexus region. Medial and lateral LMC motor axons show dorso-ventral guidance defects in the forelimb. In contrast, Sema3F-Npn-2 signaling guides the axons of a medial subset of LMC neurons to the ventral limb, but plays no major role in regulating their fasciculation. Thus, Sema3A-Npn-1 and Sema3F-Npn-2 signaling control distinct steps of motor axon growth and guidance during the formation of spinal motor connections.


Asunto(s)
Conos de Crecimiento/metabolismo , Neuronas Motoras/metabolismo , Neuropilinas/metabolismo , Semaforinas/metabolismo , Transducción de Señal/fisiología , Médula Espinal/embriología , Animales , Tipificación del Cuerpo/fisiología , Plexo Braquial/embriología , Diferenciación Celular/fisiología , Embrión de Pollo , Miembro Anterior/embriología , Miembro Anterior/inervación , Regulación del Desarrollo de la Expresión Génica/fisiología , Conos de Crecimiento/ultraestructura , Miembro Posterior/embriología , Miembro Posterior/inervación , Esbozos de los Miembros/embriología , Esbozos de los Miembros/inervación , Plexo Lumbosacro/embriología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Neuronas Motoras/citología , Músculo Esquelético/embriología , Músculo Esquelético/inervación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo
17.
Neuroscience ; 388: 23-35, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30004010

RESUMEN

Perineuronal nets (PNNs) are a form of aggregate Extracellular Matrix (ECM) in the brain. Recent evidence suggests that the postnatal deposition of PNNs may play an active role in regulating neuroplasticity and, potentially, neurological disorders. Observations of high levels of PNN expression around somas, proximal dendrites, and axon initial segments of a subtype of neurons have also led to proposals that PNNs may modulate the intrinsic properties of the neurons they ensheathe. While high levels of PNNs are postnatally expressed throughout the neocortex, it is still unclear how they impact the neuronal physiology of the many classes and subtypes of neurons that exist. In this study, we demonstrate that Chondroitinase ABC digestion of PNNs from acute cortical slices from juvenile mice (P28-35) resulted in neuron-specific impacts on intrinsic physiology. Fast spiking (FS) interneurons showed decreased input resistance, resting membrane potential (RMP), reduced action potential (AP) peaks and altered spontaneous synaptic inputs. Low-Threshold Spiking interneurons showed altered rebound depolarizations and decreased frequency of spontaneous synaptic inputs. Putative excitatory neurons; regular spiking, bursting, and doublet phenotypes did not demonstrate any alterations. Our data indicate that chABC-sensitive PNNs may specifically regulate the intrinsic and synaptic physiology of inhibitory interneurons.


Asunto(s)
Condroitina ABC Liasa/metabolismo , Matriz Extracelular/metabolismo , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Corteza Somatosensorial/metabolismo , Transmisión Sináptica/fisiología , Animales , Femenino , Masculino , Ratones , Neuronas/citología , Corteza Somatosensorial/citología , Técnicas de Cultivo de Tejidos
18.
Neuron ; 99(1): 98-116.e7, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29937280

RESUMEN

The neonatal mammal faces an array of sensory stimuli when diverse neuronal types have yet to form sensory maps. How these inputs interact with intrinsic neuronal activity to facilitate circuit assembly is not well understood. By using longitudinal calcium imaging in unanesthetized mouse pups, we show that layer I (LI) interneurons, delineated by co-expression of the 5HT3a serotonin receptor (5HT3aR) and reelin (Re), display spontaneous calcium transients with the highest degree of synchrony among cell types present in the superficial barrel cortex at postnatal day 6 (P6). 5HT3aR Re interneurons are activated by whisker stimulation during this period, and sensory deprivation induces decorrelation of their activity. Moreover, attenuation of thalamic inputs through knockdown of NMDA receptors (NMDARs) in these interneurons results in expansion of whisker responses, aberrant barrel map formation, and deficits in whisker-dependent behavior. These results indicate that recruitment of specific interneuron types during development is critical for adult somatosensory function. VIDEO ABSTRACT.


Asunto(s)
Calcio/metabolismo , Corteza Cerebral/crecimiento & desarrollo , Interneuronas/fisiología , Receptores de N-Metil-D-Aspartato/genética , Privación Sensorial/fisiología , Corteza Somatosensorial/crecimiento & desarrollo , Tacto/fisiología , Animales , Animales Recién Nacidos , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Técnicas de Silenciamiento del Gen , Interneuronas/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/crecimiento & desarrollo , Optogenética , Técnicas de Placa-Clamp , Estimulación Física , Células Piramidales/metabolismo , Células Piramidales/fisiología , Receptores de Serotonina 5-HT3/metabolismo , Proteína Reelina , Serina Endopeptidasas/metabolismo , Corteza Somatosensorial/metabolismo , Tacto/genética , Vibrisas
19.
Front Biol (Beijing) ; 11(6): 459-470, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28133476

RESUMEN

BACKGROUND: Neuronal activity in cortical areas regulates neurodevelopment by interacting with defined genetic programs to shape the mature central nervous system. Electrical activity is conveyed to sensory cortical areas via intracortical and thalamocortical neurons, and includes oscillatory patterns that have been measured across cortical regions. OBJECTIVE: In this work, we review the most recent findings about how electrical activity shapes the developmental assembly of functional circuitry in the somatosensory cortex, with an emphasis on interneuron maturation and integration. We include studies on the effect of various neurotransmitters and on the influence of thalamocortical afferent activity on circuit development. We additionally reviewed studies describing network activity patterns. METHODS: We conducted an extensive literature search using both the PubMed and Google Scholar search engines. The following keywords were used in various iterations: "interneuron", "somatosensory", "development", "activity", "network patterns", "thalamocortical", "NMDA receptor", "plasticity". We additionally selected papers known to us from past reading, and those recommended to us by reviewers and members of our lab. RESULTS: We reviewed a total of 132 articles that focused on the role of activity in interneuronal migration, maturation, and circuit development, as well as the source of electrical inputs and patterns of cortical activity in the somatosensory cortex. 79 of these papers included in this timely review were written between 2007 and 2016. CONCLUSIONS: Neuronal activity shapes the developmental assembly of functional circuitry in the somatosensory cortical interneurons. This activity impacts nearly every aspect of development and acquisition of mature neuronal characteristics, and may contribute to changing phenotypes, altered transmitter expression, and plasticity in the adult. Progressively changing oscillatory network patterns contribute to this activity in the early postnatal period, although a direct requirement for specific patterns and origins of activity remains to be demonstrated.

20.
Nat Neurosci ; 18(3): 393-401, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25664912

RESUMEN

Neuronal microcircuits in the superficial layers of the mammalian cortex provide the substrate for associative cortical computation. Inhibitory interneurons constitute an essential component of the circuitry and are fundamental to the integration of local and long-range information. Here we report that, during early development, superficially positioned Reelin-expressing neurogliaform interneurons in the mouse somatosensory cortex receive afferent innervation from both cortical and thalamic excitatory sources. Attenuation of ascending sensory, but not intracortical, excitation leads to axo-dendritic morphological defects in these interneurons. Moreover, abrogation of the NMDA receptors through which the thalamic inputs signal results in a similar phenotype, as well as in the selective loss of thalamic and a concomitant increase in intracortical connectivity. These results suggest that thalamic inputs are critical in determining the balance between local and long-range connectivity and are fundamental to the proper integration of Reelin-expressing interneurons into nascent cortical circuits.


Asunto(s)
Vías Aferentes/fisiología , Corteza Cerebral/citología , Potenciales Postsinápticos Excitadores/fisiología , Interneuronas/fisiología , Red Nerviosa/fisiología , Vibrisas/inervación , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Bicuculina/farmacología , Electroporación , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Proteínas de Homeodominio/genética , Técnicas In Vitro , Ratones , Ratones Transgénicos , Embarazo , ARN no Traducido/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de Serotonina 5-HT3/genética , Proteína Reelina , Factores de Transcripción/genética , Proteína 2 de Transporte Vesicular de Glutamato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA