Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Phys Rev Lett ; 120(2): 023901, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29376703

RESUMEN

Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (∼284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.

2.
Phys Rev Lett ; 118(3): 033202, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28157370

RESUMEN

The hitherto unexplored two-photon doubly excited states [Ne^{*}(2p^{-1}3s)]_{2} were experimentally identified using the seeded, fully coherent, intense extreme ultraviolet free-electron laser FERMI. These states undergo ultrafast interatomic Coulombic decay (ICD), which predominantly produces singly ionized dimers. In order to obtain the rate of ICD, the resulting yield of Ne_{2}^{+} ions was recorded as a function of delay between the extreme ultraviolet pump and UV probe laser pulses. The extracted lifetimes of the long-lived doubly excited states, 390(-130/+450) fs, and of the short-lived ones, less than 150 fs, are in good agreement with ab initio quantum mechanical calculations.

3.
Phys Rev Lett ; 117(27): 276806, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28084773

RESUMEN

Ne clusters (∼5000 atoms) were resonantly excited (2p→3s) by intense free electron laser (FEL) radiation at FERMI. Such multiply excited clusters can decay nonradiatively via energy exchange between at least two neighboring excited atoms. Benefiting from the precise tunability and narrow bandwidth of seeded FEL radiation, specific sites of the Ne clusters were probed. We found that the relaxation of cluster surface atoms proceeds via a sequence of interatomic or intermolecular Coulombic decay (ICD) processes while ICD of bulk atoms is additionally affected by the surrounding excited medium via inelastic electron scattering. For both cases, cluster excitations relax to atomic states prior to ICD, showing that this kind of ICD is rather slow (picosecond range). Controlling the average number of excitations per cluster via the FEL intensity allows a coarse tuning of the ICD rate.

4.
J Synchrotron Radiat ; 22(3): 485-91, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931057

RESUMEN

FERMI is a seeded free-electron laser (FEL) facility located at the Elettra laboratory in Trieste, Italy, and is now in user operation with its first FEL line, FEL-1, covering the wavelength range between 100 and 20 nm. The second FEL line, FEL-2, a high-gain harmonic generation double-stage cascade covering the wavelength range 20-4 nm, has also completed commissioning and the first user call has been recently opened. An overview of the typical operating modes of the facility is presented.

5.
Phys Rev Lett ; 114(1): 013901, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25615469

RESUMEN

We report the first experimental evidence of enhancement of self-amplified spontaneous emission, due to the use of an optical klystron. In this free-electron laser scheme, a relativistic electron beam passes through two undulators, separated by a dispersive section. The latter converts the electron-beam energy modulation produced in the first undulator in density modulation, thus enhancing the free-electron laser gain. The experiment has been carried out at the FERMI facility in Trieste. Powerful radiation has been produced in the extreme ultraviolet range, with an intensity a few orders of magnitude larger than in pure self-amplified spontaneous emission mode. Data have been benchmarked with an existing theoretical model.

6.
Phys Rev Lett ; 112(4): 044801, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24580459

RESUMEN

Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.


Asunto(s)
Electrones , Rayos Láser , Aceleradores de Partículas/instrumentación , Modelos Teóricos , Dinámicas no Lineales
7.
Phys Rev Lett ; 113(24): 247202, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25541801

RESUMEN

Thin film magnetization reversal without applying external fields is an attractive perspective for applications in sensors and devices. One way to accomplish it is by fine-tuning the microstructure of a magnetic substrate via temperature control, as in the case of a thin Fe layer deposited on a MnAs/GaAs(001) template. This work reports a time-resolved resonant scattering study exploring the magnetic and structural properties of the Fe/MnAs system, using a 100 fs optical laser pulse to trigger local temperature variations and a 100 fs x-ray free-electron laser pulse to probe the induced magnetic and structural dynamics. The experiment provides direct evidence that a single optical laser pulse can reverse the Fe magnetization locally. It reveals that the time scale of the magnetization reversal is slower than that of the MnAs structural transformations triggered by the optical pulse, which take place after a few picoseconds already.

8.
Appl Opt ; 53(26): 5879-88, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25321666

RESUMEN

We present the design and characterization of a double-configuration grating monochromator for the spectral selection of extreme-ultraviolet ultrafast pulses. Two grating geometries are joined in an instrument with two interchangeable diffracting stages, both used at grazing incidence: one with the gratings in the off-plane mount (OPM), the other in the classical diffraction mount (CDM). The use of two stages gives great flexibility: the OPM stage is used for sub-50 fs time response and low spectral resolution, while the CDM stage is for 100-200 fs time response and high spectral resolution. The monochromator spectral and temporal performances have been experimentally demonstrated on a high-order laser-harmonics beam line.

9.
Opt Express ; 19(11): 10619-24, 2011 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-21643316

RESUMEN

Frequency pulling is a well-known phenomenon in standard laser physics, leading to a shift of the laser frequency when the cavity and maximum gain frequencies are detuned. In this letter we present the first experimental demonstration of frequency pulling in single-pass free-electron lasers. Measurements are performed using the single-pass free-electron laser installed on the Elettra storage ring.

10.
Phys Rev Lett ; 107(8): 084801, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21929170

RESUMEN

Tunable polarization over a wide spectral range is a required feature of light sources employed to investigate the properties of local symmetry in matter. In this Letter, we provide the first experimental characterization of the polarization of the harmonic light produced by a free-electron laser and demonstrate a method to obtain free-electron laser harmonics with tunable polarization. Experimental results are successfully compared with theory. Our findings can be expected to have a deep impact on the design and realization of experiments requiring full control of light polarization.

11.
Phys Rev Lett ; 105(1): 010601, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20867431

RESUMEN

According to thermodynamics, the specific heat of Boltzmannian short-range interacting systems is a positive quantity. Less intuitive properties are instead displayed by systems characterized by long-range interactions. In that case, the sign of specific heat depends on the considered statistical ensemble: Negative specific heat can be found in isolated systems, which are studied in the framework of the microcanonical ensemble; on the other hand, it is generally recognized that a positive specific heat should always be measured in systems in contact with a thermal bath, for which the canonical ensemble is the appropriate one. We demonstrate that the latter assumption is not generally true: One can, in principle, measure negative specific heat also in the canonical ensemble if the system under scrutiny is non-Boltzmannian and/or out-of-equilibrium.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 1): 021138, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19792108

RESUMEN

Systems with long-range interactions display a short-time relaxation toward quasistationary states (QSSs) whose lifetime increases with system size. The application of Lynden-Bell's theory of "violent relaxation" to the Hamiltonian Mean Field model leads to the prediction of out-of-equilibrium first- and second-order phase transitions between homogeneous (zero magnetization) and inhomogeneous (nonzero magnetization) QSSs, as well as an interesting phenomenon of phase re-entrances. We compare these theoretical predictions with direct N -body numerical simulations. We confirm the existence of phase re-entrance in the typical parameter range predicted from Lynden-Bell's theory, but also show that the picture is more complicated than initially thought. In particular, we exhibit the existence of secondary re-entrant phases: we find unmagnetized states in the theoretically magnetized region as well as persisting magnetized states in the theoretically unmagnetized region. We also report the existence of a region with negative specific heats for QSSs both in the numerical and analytical caloric curves.

13.
Sci Rep ; 8(1): 11661, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30076346

RESUMEN

We demonstrate that emission of coherent transition radiation by a ∼1 GeV energy-electron beam passing through an Al foil is enhanced in intensity and extended in frequency spectral range, by the energy correlation established along the beam by coherent synchrotron radiation wakefield, in the presence of a proper electron optics in the beam delivery system. Analytical and numerical models, based on experimental electron beam parameters collected at the FERMI free electron laser (FEL), predict transition radiation with two intensity peaks at ∼0.3 THz and ∼1.5 THz, and extending up to 8.5 THz with intensity above 20 dB w.r.t. the main peak. Up to 80-µJ pulse energy integrated over the full bandwidth is expected at the source, and in agreement with experimental pulse energy measurements. By virtue of its implementation in an FEL beam dump line, this work promises dissemination of user-oriented multi-THz beamlines parasitic and self-synchronized to EUV and x-ray FELs.

14.
Nat Commun ; 8: 14971, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28378741

RESUMEN

Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly nonlinear light-matter interactions, and the disentanglement and independent control of the intrinsic and extrinsic components of the photon's angular momentum at short-wavelengths. The methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules and violation of dipolar selection rules in atoms.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(6 Pt 2): 066504, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16089888

RESUMEN

The ultimate performance of a storage-ring free-electron laser in terms of light stability and extracted power depends on the possibility of simultaneously controlling the electron-beam and laser dynamics. As a preliminary requirement, the level of longitudinal and transverse electron-beam stability must be high enough to guarantee the laser start-up and growth. This is usually obtained by means of dedicated feedback systems. Once such a requirement is satisfied, the possibility of establishing and maintaining a continuous-wave operation mode finally resides in a deep understanding of the strongly coupled laser-electrons dynamics. For this purpose, we have developed a simple theoretical model which has been proved to be able to provide insight into the evolution of the laser intensity. In this framework, we have also proposed the possibility of utilizing a derivative closed-loop feedback to create or enlarge the region of stable signal. A feedback of this type has been implemented on the Elettra storage-ring free-electron laser. The obtained results, which fully confirm our predictions, are discussed in this paper.

16.
Sci Rep ; 5: 13531, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26314764

RESUMEN

Polarization control is a key feature of light generated by short-wavelength free-electron lasers. In this work, we report the first experimental characterization of the polarization properties of an extreme ultraviolet high gain free-electron laser operated with crossed polarized undulators. We investigate the average degree of polarization and the shot-to-shot stability and we analyze aspects such as existing possibilities for controlling and switching the polarization state of the emitted light. The results are in agreement with predictions based on Gaussian beams propagation.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(5 Pt 2): 056504, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12059722

RESUMEN

The longitudinal distribution of a free-electron laser (FEL) may present a complex internal structure. This phenomenon has been already observed in the case of LINAC based oscillators and self-amplified spontaneous emission devices (for which the presence of "spikes" in the temporal distribution is systematically observed). We investigate here the physical process responsible for the growth of complex substructures inside the micropulse of a storage-ring free-electron laser. This "hole-burning-like" process results from the localized character of the interaction between the ultrarelativistic electron beam circulating in the storage ring and the laser pulse. Experimental results concerning the case of the super-ACO FEL are presented and interpreted by means of a pass-to-pass tracking code containing all the relevant features of the system dynamics.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(2 Pt 2): 026501, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12636832

RESUMEN

This paper gives an analytical description of the stationary regime of a storage-ring free-electron laser in the presence of the maximum detuning (compatible with the laser onset) between the laser pulse and the electron beam when they pass and interact in the optical cavity. In this condition, the conservation of the first moments of the laser intensity distribution allows one to express the peak gain of the light amplification process and the maximum detuning as a function of system parameters that are directly measurable. These theoretical results are compared with experiments performed on the Super-ACO free-electron laser.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(2 Pt 2): 026502, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11497720

RESUMEN

In this paper a theoretical model is presented, which is based on a pass to pass analysis of the localized interaction between a short laser pulse with a wider electron distribution. It can be applied to a large class of physical phenomena and, in particular, to the case of a storage-ring free-electron laser (FEL). Numerical results are confirmed by experimental measurements done on the ACO and Super-ACO FELs.

20.
Rev Sci Instrum ; 85(2): 023104, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24593346

RESUMEN

We present the main features of CITIUS, a new light source for ultrafast science, generating tunable, intense, femtosecond pulses in the spectral range from infrared to extreme ultraviolet (XUV). The XUV pulses (about 10(5)-10(8) photons/pulse in the range 14-80 eV) are produced by laser-induced high-order harmonic generation in gas. This radiation is monochromatized by a time-preserving monochromator, also allowing one to work with high-resolution bandwidth selection. The tunable IR-UV pulses (10(12)-10(15) photons/pulse in the range 0.4-5.6 eV) are generated by an optical parametric amplifier, which is driven by a fraction of the same laser pulse that generates high order harmonics. The IR-UV and XUV pulses follow different optical paths and are eventually recombined on the sample for pump-probe experiments. We also present the results of two pump-probe experiments: with the first one, we fully characterized the temporal duration of harmonic pulses in the time-preserving configuration; with the second one, we demonstrated the possibility of using CITIUS for selective investigation of the ultra-fast dynamics of different elements in a magnetic compound.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA