Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cancer Cell Int ; 22(1): 386, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482329

RESUMEN

Therapeutic effect of phytochemicals has been emphasized in the traditional medicine owing to the presence of bioactive molecules, such as polyphenols. Luteolin is a flavone belonging to the flavonoid class of polyphenolic phytochemicals with healing effect on hypertension, inflammatory disorders, and cancer due to its action as pro-oxidants and antioxidants. The anticancer profile of luteolin is of interest due to the toxic effect of contemporary chemotherapy paradigm, leading to the pressing need for the development and identification of physiologically benevolent anticancer agents and molecules. Luteolin exerts anticancer activity by downregulation of key regulatory pathways associated with oncogenesis, in addition to the induction of oxidative stress, cell cycle arrest, upregulation of apoptotic genes, and inhibition of cell proliferation and angiogenesis in cancer cells. In this review, we discuss about the anticancer profile of luteolin.

2.
Subcell Biochem ; 97: 211-245, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33779919

RESUMEN

Chemotherapy represents the current mainstay therapeutic approach for most types of cancer. Despite the development of targeted chemotherapeutic strategies, the efficacy of anti-cancer drugs is severely limited by the development of drug resistance. Multidrug resistance (MDR) consists of the simultaneous resistance to various unrelated cytotoxic drugs and is one of the main causes of anticancer treatment failure. One of the principal mechanisms by which cancer cells become MDR involves the overexpression of ATP Binding Cassette (ABC) transporters, such as P-glycoprotein (P-gp), mediating the active efflux of cytotoxic molecules from the cytoplasm. Extracellular vesicles (EVs) are submicron lipid-enclosed vesicles that are released by all cells and which play a fundamental role in intercellular communication in physiological and pathological contexts. EVs have fundamental function at each step of cancer development and progression. They mediate the transmission of MDR through the transfer of vesicle cargo including functional ABC transporters as well as nucleic acids, proteins and lipids. Furthermore, EVs mediate MDR by sequestering anticancer drugs and stimulate cancer cell migration and invasion. EVs also mediate the communication with the tumour microenvironment and the immune system, resulting in increased angiogenesis, metastasis and immune evasion. All these actions contribute directly and indirectly to the development of chemoresistance and treatment failure. In this chapter, we describe the many roles EVs play in the acquisition and spread of chemoresistance in cancer. We also discuss possible uses of EVs as pharmacological targets to overcome EV-mediated drug resistance and the potential that the analysis of tumour-derived EVs offers as chemoresistance biomarkers.


Asunto(s)
Antineoplásicos , Vesículas Extracelulares , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
3.
Proteomics ; 21(13-14): e2000091, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33870651

RESUMEN

Spectrin is a ubiquitous cytoskeletal protein that provides structural stability and supports membrane integrity. In erythrocytes, spectrin proteolysis leads to the biogenesis of plasma membrane extracellular vesicles (EVs). However, its role in non-erythroid or cancer-derived plasma membrane EVs biogenesis is unknown. This study aims to examine the role of αII-spectrin in malignant and non-malignant plasma membrane vesiculation. We developed a custom, automated cell segmentation plugin for the image processor, Fiji, that provides an unbiased assessment of high resolution confocal microscopy images of the subcellular distribution of αII-spectrin. We show that, in low vesiculating non-malignant MBE-F breast cells, prominent cortical spectrin localises to the cell periphery at rest. In comparison, cortical spectrin is diminished in high vesiculating malignant MCF-7 breast cells at rest. A cortical distribution of spectrin correlates with increased biomechanical stiffness as measured by Atomic Force Microscopy. Furthermore, cortical spectrin can be induced in malignant MCF-7 cells by treatment with known vesiculation modulators including the calcium chelator, BAPTA-AM or the calpain inhibitor II (ALLM). These results demonstrate that the subcellular localisation of spectrin is distinctly different in malignant and non-malignant cells at rest and shows that the redistribution of cortical αII-spectrin to the cytoplasm supports plasma membrane-derived EV biogenesis in malignant cells.


Asunto(s)
Vesículas Extracelulares , Espectrina , Citoesqueleto de Actina , Calpaína , Citosol
4.
Pharmacol Res ; 136: 35-44, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30142423

RESUMEN

Cancer management paradigms are shifting towards a personalized approach thanks to the advent of the -omics technologies. Liquid biopsies, consisting in the sampling of blood and other bodily fluids, are emerging as a valid alternative to circulating tumor biomarkers and tumor tissue biopsies for cancer diagnosis, routine monitoring and prognostication. The content of a liquid biopsy is referred to as the "tumor circulome". Among its components, circulating tumor DNA (ctDNA), including both cell-free and exosome-associated DNA, is the most widely characterized element. ctDNA analysis has a tremendous capability in the diagnostic arena. Its potential has been demonstrated at each level of disease staging and management and supported by a recent FDA approval for companion diagnostic, and the investments being made by pharmaceutical companies in this sector are numerous. The approaches available for ctDNA analysis allow both quantitative and qualitative studies and range from PCR and dPCR-mediated single/multiple gene mutational assessment to whole genome next generation sequencing and methylation mapping. Although the principal object of a liquid biopsy is blood, other body fluids such as urine and saliva show potential as complementary DNA sources for tumor analysis. In this review we provide a synopsis on the state of play of current ctDNA application. We discuss the clinical significance of ctDNA analysis and review the state of the art of technologies being currently developed to this aim. We also discuss the current issues limiting ctDNA application and highlight the promising approaches being developed to overcome these.


Asunto(s)
ADN Tumoral Circulante , Neoplasias/genética , Humanos , Biopsia Líquida , Neoplasias/diagnóstico
5.
Pathol Res Pract ; 253: 155038, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101157

RESUMEN

Lung cancer is one of the leading causes of death worldwide, whereby the major contributing factors are cigarette smoking and exposure to environmental pollutants. Despite the availability of numerous treatment options, including chemotherapy, the five-year survival rate is still extremely low, highlighting the urgent need to develop novel, more effective therapeutic strategies. In this context, the repurposing of previously approved drugs is an advantage in terms of time and resources invested. Ribavirin is an antiviral drug approved for the treatment of hepatitis C, which shows potential for repurposing as an anticancer agent. Among the many signaling molecules promoting carcinogenesis, the interleukins (ILs) IL-6 and IL-8 are interesting therapeutic targets as they promote a variety of cancer hallmarks such as cell proliferation, migration, metastasis, and angiogenesis. In the present study, we show that ribavirin significantly downregulates the expression of IL-6 and IL-8 in vitro in A549 human lung adenocarcinoma cells. The results of this study shed light on the anticancer mechanisms of ribavirin, providing further proof of its potential as a repurposed drug for the treatment of lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Ribavirina/farmacología , Ribavirina/uso terapéutico , Interleucina-6 , Interleucina-8 , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/patología , Carcinogénesis
6.
Chem Biol Interact ; 396: 111059, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38761875

RESUMEN

Chronic inflammation, oxidative stress, and airway remodelling represent the principal pathophysiological features of chronic respiratory disorders. Inflammation stimuli like lipopolysaccharide (LPS) activate macrophages and dendritic cells, with concomitant M1 polarization and release of pro-inflammatory cytokines. Chronic inflammation and oxidative stress lead to airway remodelling causing irreversible functional and structural alterations of the lungs. Airway remodelling is multifactorial, however, the hormone transforming growth factor-ß (TGF-ß) is one of the main contributors to fibrotic changes. The signalling pathways mediating inflammation and remodelling rely both on the transcription factor nuclear factor-κB (NFκB), underlying the potential of NFκB inhibition as a therapeutic strategy for chronic respiratory disorders. In this study, we encapsulated an NFκB-inhibiting decoy oligodeoxynucleotide (ODN) in spermine-functionalized acetalated dextran (SpAcDex) nanoparticles and tested the in vitro anti-inflammatory and anti-remodelling activity of this formulation. We show that NF-κB ODN nanoparticles counteract inflammation by reversing LPS-induced expression of the activation marker CD40 in myeloid cells and counteracts remodelling features by reversing the TGF-ß-induced expression of collagen I and α-smooth muscle actin in human dermal fibroblast. In summary, our study highlights the great potential of inhibiting NFκB via decoy ODN as a therapeutic strategy tackling multiple pathophysiological features underlying chronic respiratory conditions.


Asunto(s)
Antiinflamatorios , Lipopolisacáridos , FN-kappa B , Nanopartículas , Oligodesoxirribonucleótidos , Espermina , Oligodesoxirribonucleótidos/farmacología , Oligodesoxirribonucleótidos/química , Humanos , Nanopartículas/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , FN-kappa B/metabolismo , Espermina/farmacología , Espermina/química , Lipopolisacáridos/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis/tratamiento farmacológico
7.
Pathol Res Pract ; 260: 155423, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38909404

RESUMEN

Curcumin, the principal curcuminoid of turmeric (Curcuma longa extract), is very well known for its multiple biological therapeutic activities, particularly its anti-inflammatory and antioxidant potential. However, due to its low water solubility, it exhibits poor bioavailability. In order to overcome this problem, in the current study, we have employed liposomal technology to encapsulate curcumin with the aim of enhancing its therapeutic efficacy. The curcumin-loaded liposomes (PlexoZome®) were tested on a cigarette smoke extract-induced Chronic Obstructive Pulmonary Disease (COPD) in vitro model using minimally immortalized human bronchial epithelial cells (BCiNS1.1). The anti-senescence and anti-inflammatory properties of PlexoZome® were explored. 5 µM PlexoZome® curcumin demonstrated anti-senescent activity by decrease in X-gal positive cells, and reduction in the expression of p16 and p21 in immunofluorescence staining. Moreover, PlexoZome® curcumin also demonstrated a reduction in proteins related to senescence (osteopontin, FGF basic and uPAR) and inflammation (GM-CSF, EGF and ST2). Overall, the results clearly demonstrate the therapeutic potential of curcumin encapsulated liposomes in managing CSE induced COPD, providing a new direction to respiratory clinics.

8.
Pathol Res Pract ; 260: 155387, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38870713

RESUMEN

Lung cancer (LC) is the leading cause of cancer-related mortality, and it is caused by many factors including cigarette smoking. Despite numerous treatment strategies for LC, its five-year survival is still poor (<20 %), attributable to treatment resistance and lack of early diagnosis and intervention. Importantly, LC incidence is higher in patients affected by chronic respiratory diseases (CRDs) such as asthma and chronic obstructive pulmonary disorder (COPD), and LC shares with other CRDs common pathophysiological features including chronic inflammation, oxidative stress, cellular senescence, and airway remodelling. Remodelling is a complex process resulting from the aberrant activation of tissue repair secondary to chronic inflammation, oxidative stress, and tissue damage observed in the airways of CRD patients, and it is characterized by irreversible airway structural and functional alterations, concomitantly with tissue fibrosis, epithelial-to-mesenchymal transition (EMT), excessive collagen deposition, and thickening of the basement membrane. Many processes involved in remodelling, particularly EMT, are also fundamental for LC pathogenesis, highlighting a potential connection between CRDs and LC. This provides rationale for the development of novel treatment strategies aimed at targeting components of the remodelling pathways. In this study, we tested the in vitro therapeutic activity of rat fecal microbiome extract (FME) on A549 human lung adenocarcinoma cells. We show that treatment with FME significantly downregulates the expression of six proteins whose function is at the forefront between airway remodelling and LC development: Snail, SPARC, MUC-1, Osteopontin, MMP-2, and HIF-1α. The results of this study, if confirmed by further investigations, provide proof-of-concept for a novel approach in the treatment of LC, focused on tackling the airway remodelling mechanisms underlying the increased susceptibility to develop LC observed in CRD patients.

9.
Heliyon ; 10(3): e25393, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356590

RESUMEN

Chronic Obstructive Pulmonary Disease (COPD) is a dilapidating condition which is characterized by inflammation, an excess in free radical generation and airway obstruction. Currently, the drugs commercially available for the management of COPD pose several limitations such as systemic adverse effects, including bone density loss and an increased risk of developing pneumonia. Moreover, another limitation includes the need for regular and frequent dosing regimens; which can affect the adherence to the therapy. Furthermore, these current treatments provide symptomatic relief; however, they cannot stop the progression of COPD. Comparatively, nanoparticles (NPs) provide great therapeutic potential to treat COPD due to their high specificity, biocompatibility, and higher bioavailability. Furthermore, the NP-based drug delivery systems involve less frequent dosing requirements and in smaller doses which assist in minimizing side effects. In this review, the benefits and limitations of conventional therapies are explored, while providing an in-depth insight on advanced applications of NP-based systems in the treatment of COPD.

10.
Pathol Res Pract ; 257: 155317, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657558

RESUMEN

Lung cancer (LC) remains a leading cause of cancer-related mortality worldwide, necessitating the exploration of innovative therapeutic strategies. This study delves into the in vitro potential of liposomal therapeutics utilizing Curcumin-loaded PlexoZome® (CUR-PLXZ) in targeting EpCAM/TROP1 and Estrogen Receptor Alpha (ERα) signalling pathways for LC management. The prevalence of LC, particularly non-small cell lung cancer (NSCLC), underscores the urgent need for effective treatments. Biomarkers like EpCAM/TROP1 and ERα/NR3A1 play crucial roles in guiding targeted therapies and influencing prognosis. EpCAM plays a key role in cell-cell adhesion and signalling along with ERα which is a nuclear receptor that binds estrogen and regulates gene expression in response to hormonal signals. In LC, both often get overexpressed and are associated with tumour progression, metastasis, and poor prognosis. Curcumin, a phytochemical with diverse therapeutic properties, holds promise in targeting these pathways. However, its limited solubility and bioavailability necessitate advanced formulations like CUR-PLXZ. Our study investigates the biological significance of these biomarkers in the A549 cell line and explores the therapeutic potential of CUR-PLXZ, which modulates the expression of these two markers. An in vitro analysis of the A549 human lung adenocarcinoma cell line identified that CUR-PLXZ at a dose of 5 µM effectively inhibited the expression of EpCAM and ERα. This finding paves the way for targeted intervention strategies in LC management.


Asunto(s)
Curcumina , Molécula de Adhesión Celular Epitelial , Receptor alfa de Estrógeno , Liposomas , Neoplasias Pulmonares , Humanos , Molécula de Adhesión Celular Epitelial/metabolismo , Curcumina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Receptor alfa de Estrógeno/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Células A549 , Antineoplásicos/farmacología
11.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 751-762, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37650889

RESUMEN

The microbiome is increasingly implicated in playing a role in physiology and pharmacology; in this review, we investigate the literature on the possibility of bacterial influence on the pharmacology of anti-asthmatic drugs, and the potential impact this has on asthmatic patients. Current knowledge in this area of research reveals an interaction between the gut and lung microbiome and the development of asthma. The influence of microbiome on the pharmacokinetics and pharmacodynamics of anti-asthmatic drugs is limited; however, understanding this interaction will assist in creating a more efficient treatment approach. This literature review highlighted that bioaccumulation and biotransformation in the presence of certain gut bacterial strains could affect drug metabolism in anti-asthmatic drugs. Furthermore, the bacterial richness in the lungs and the gut can influence drug efficacy and could also play a role in drug response. The implications of the above findings suggest that the microbiome is a contributing factor to an individuals' pharmacological response to anti-asthmatic drugs. Hence, future directions for research should follow investigating how these processes affect asthmatic patients and consider the role of the microbiome on drug efficacy and modify treatment guidelines accordingly.


Asunto(s)
Antiasmáticos , Asma , Microbiota , Humanos , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Asma/tratamiento farmacológico , Asma/metabolismo , Pulmón/metabolismo , Bacterias
12.
Life Sci ; 349: 122730, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38768774

RESUMEN

Chronic respiratory diseases (CRDs) represent a significant proportion of global health burden, with a wide spectrum of varying, heterogenic conditions largely affecting the pulmonary system. Recent advances in immunology and respiratory biology have highlighted the systemic impact of these diseases, notably through the elucidation of the lung-eye axis. The current review focusses on understanding the pivotal role of the lung-eye axis in the pathogenesis and progression of chronic respiratory infections and diseases. Existing literature published on the immunological crosstalk between the eye and the lung has been reviewed. The various roles of the ocular microbiome in lung health are also explored, examining the eye as a gateway for respiratory virus transmission, and assessing the impact of environmental irritants on both ocular and respiratory systems. This novel concept emphasizes a bidirectional relationship between respiratory and ocular health, suggesting that respiratory diseases may influence ocular conditions and vice versa, whereby this conception provides a comprehensive framework for understanding the intricate axis connecting both respiratory and ocular health. These aspects underscore the need for an integrative approach in the management of chronic respiratory diseases. Future research should further elucidate the in-depth molecular mechanisms affecting this axis which would pave the path for novel diagnostics and effective therapeutic strategies.


Asunto(s)
Ojo , Pulmón , Humanos , Pulmón/microbiología , Pulmón/fisiopatología , Ojo/microbiología , Oftalmopatías/fisiopatología , Oftalmopatías/etiología , Animales , Enfermedades Respiratorias/fisiopatología , Enfermedades Respiratorias/microbiología , Enfermedades Respiratorias/virología , Microbiota/fisiología
13.
Life Sci ; 352: 122859, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38925223

RESUMEN

Lung cancer is among leading causes of death worldwide. The five-year survival rate of this disease is extremely low (17.8 %), mainly due to difficult early diagnosis and to the limited efficacy of currently available chemotherapeutics. This underlines the necessity to develop innovative therapies for lung cancer. In this context, drug repurposing represents a viable approach, as it reduces the turnaround time of drug development removing costs associated to safety testing of new molecular entities. Ribavirin, an antiviral molecule used to treat hepatitis C virus infections, is particularly promising as repurposed drug for cancer treatment, having shown therapeutic activity against glioblastoma, acute myeloid leukemia, and nasopharyngeal carcinoma. In the present study, we thoroughly investigated the in vitro anticancer activity of ribavirin against A549 human lung adenocarcinoma cells. From a functional standpoint, ribavirin significantly inhibits cancer hallmarks such as cell proliferation, migration, and colony formation. Mechanistically, ribavirin downregulates the expression of numerous proteins and genes regulating cell migration, proliferation, apoptosis, and cancer angiogenesis. The anticancer potential of ribavirin was further investigated in silico through gene ontology pathway enrichment and protein-protein interaction networks, identifying five putative molecular interactors of ribavirin (Erb-B2 Receptor Tyrosine Kinase 4 (Erb-B4); KRAS; Intercellular Adhesion Molecule 1 (ICAM-1); amphiregulin (AREG); and neuregulin-1 (NRG1)). These interactions were characterized via molecular docking and molecular dynamic simulations. The results of this study highlight the potential of ribavirin as a repurposed chemotherapy against lung cancer, warranting further studies to ascertain the in vivo anticancer activity of this molecule.

14.
Ageing Res Rev ; 97: 102315, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38679394

RESUMEN

Lung cancer stands as the primary contributor to cancer-related fatalities worldwide, affecting both genders. Two primary types exist where non-small cell lung cancer (NSCLC), accounts for 80-85% and SCLC accounts for 10-15% of cases. NSCLC subtypes include adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Smoking, second-hand smoke, radon gas, asbestos, and other pollutants, genetic predisposition, and COPD are lung cancer risk factors. On the other hand, stresses such as DNA damage, telomere shortening, and oncogene activation cause a prolonged cell cycle halt, known as senescence. Despite its initial role as a tumor-suppressing mechanism that slows cell growth, excessive or improper control of this process can cause age-related diseases, including cancer. Cellular senescence has two purposes in lung cancer. Researchers report that senescence slows tumor growth by constraining multiplication of impaired cells. However, senescent cells also demonstrate the pro-inflammatory senescence-associated secretory phenotype (SASP), which is widely reported to promote cancer. This review will look at the role of cellular senescence in lung cancer, describe its diagnostic markers, ask about current treatments to control it, look at case studies and clinical trials that show how senescence-targeting therapies can be used in lung cancer, and talk about problems currently being faced, and possible solutions for the same in the future.


Asunto(s)
Senescencia Celular , Neoplasias Pulmonares , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología
15.
Chem Biol Interact ; 394: 110988, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574834

RESUMEN

Epilepsy is a neurological disorder characterized by overstimulation of neurotransmitters and uncontrolled seizures. Current medications for epilepsy result in adverse effects or insufficient seizure control, highlighting the necessity to develop alternative therapies. Cannabidiol (CBD), derived from cannabis plants, has been popularly explored as an alternative. CBD is shown to have anti-convulsivatng and muscle-relaxing properties, which have been used in patients with epilepsy with promising results. Current research explores varying dosages in either adult or paediatric patients, with little or no comparison between the two populations. In this review, we aim at consolidating this data and comparing the effect and pharmacokinetic properties of CBD across these two patient populations. When comparing the absorption, there was insufficient data to show differences between paediatric and adult patients. Similarly, limited information was available in comparing the distribution of CBD, but a higher volume of distribution was found in the paediatric population. From the metabolism perspective, the paediatric population had a greater success rate when treated with the drug compared to the adult population. In the elimination, there were no clear distinctions in the clearance rate between the two populations. The drug's half-life was highly variable in both populations, with paediatrics having a lower range than adults. In summary, the paediatric population had a more significant reduction in the severity of seizures compared to the adult population upon CBD treatment. The complexity in which CBD operates highlights the need for further studies of the compound to further understand why differences occur between these two populations.


Asunto(s)
Anticonvulsivantes , Cannabidiol , Epilepsia , Cannabidiol/farmacocinética , Cannabidiol/uso terapéutico , Humanos , Epilepsia/tratamiento farmacológico , Niño , Adulto , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapéutico
16.
Artículo en Inglés | MEDLINE | ID: mdl-38717707

RESUMEN

Dyslipidaemia describes the condition of abnormal lipid levels in a person's bloodstream. Since the 1980s, statin medications have been used to treat dyslipidaemia and other comorbidities, such as stroke risk and atherosclerosis. Statin medications were initially synthesised from fungal metabolites, but many synthetic statin drugs have been manufactured since then. Statin medication is quite effective in reducing total cholesterol levels in the bloodstream, but it has limitations. Due to their poor water solubility, statin drugs possess poor oral bioavailability, which hinders their therapeutic efficacy. Nanoparticle drug delivery technology has been shown to improve the pharmacokinetic profiles of many drug classes, and statins have great potential to benefit from this. This paper reviewed the currently available literature on nanoparticle statin medication and evaluated the possible improvements that can be made to the pharmacokinetic profile and efficacy of conventional statin medication. It was found that the oral bioavailability of nanoparticle medication consistently outperformed conventional medication by up to 400% in some cases. Substantial improvements in time to peak plasma concentration and plasma concentration peaks were also found, and increased periods in circulation before excretion were shown. It was concluded that nanoparticle technology has the potential to completely replace conventional statin medication as it offers more significant benefits with minimal drawbacks. Upon further study and development, the manufacture of nanoparticle statin medication should become feasible enough for large-scale application, which will significantly benefit patients and unburden healthcare systems.

17.
Pathol Res Pract ; 257: 155290, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38640781

RESUMEN

The intricate relationship between smoking and the effects of the antiplatelet drug clopidogrel has been termed the "smoker's paradox". This paradox details the enhanced efficacy of clopidogrel in smokers compared to non-smokers. This review begins with an exploration of the proposed mechanisms of the smoker's paradox, particularly drawing attention to the induction of cytochrome P450 (CYP) isoenzymes via tobacco smoke, specifically the enzymes CYP1A2 and CYP2C19. Moreover, an investigation of the effects of genetic variability on the smoker's paradox was undertaken from both clinical and molecular perspectives, delving into the effects of ethnicity and genetic polymorphisms. The intriguing role of CYP1A2 genotypes and the response to clopidogrel in smoking and non-smoking populations was examined conferring insight into the individuality rather than universality of the smoker's paradox. CYP1A2 induction is hypothesised to elucidate the potency of smoking in exerting a counteracting effect in those taking clopidogrel who possess CYP2C19 loss of function polymorphisms. Furthermore, we assess the comparative efficacies of clopidogrel and other antiplatelet agents, namely prasugrel and ticagrelor. Studies indicated that prasugrel and ticagrelor provided a more consistent effect and further reduced platelet reactivity compared to clopidogrel within both smoking and non-smoking populations. Personalised dosing was another focus of the review considering patient comorbidities, genetic makeup, and smoking status with the objective of improving the antiplatelet response of those taking clopidogrel. In summation, this review provides insight into multiple areas of research concerning clopidogrel and the smoker's paradox taking into account proposed mechanisms, genetics, other antiplatelet agents, and personalised dosing.


Asunto(s)
Clopidogrel , Inhibidores de Agregación Plaquetaria , Fumar , Humanos , Clopidogrel/uso terapéutico , Inhibidores de Agregación Plaquetaria/uso terapéutico , Inhibidores de Agregación Plaquetaria/farmacología , Fumar/efectos adversos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Fumadores , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo
18.
Chem Biol Interact ; 395: 111009, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38641145

RESUMEN

The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.


Asunto(s)
Enfermedades Pulmonares , Simbióticos , Humanos , Enfermedades Pulmonares/tratamiento farmacológico , Nanoestructuras/química , Pulmón/efectos de los fármacos , Pulmón/patología , Animales , Nanopartículas/química
19.
Pathol Res Pract ; 257: 155295, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38603841

RESUMEN

Tobacco smoking is a leading cause of preventable mortality, and it is the major contributor to diseases such as COPD and lung cancer. Cigarette smoke compromises the pulmonary antiviral immune response, increasing susceptibility to viral infections. There is currently no therapy that specifically addresses the problem of impaired antiviral response in cigarette smokers and COPD patients, highlighting the necessity to develop novel treatment strategies. 18-ß-glycyrrhetinic acid (18-ß-gly) is a phytoceutical derived from licorice with promising anti-inflammatory, antioxidant, and antiviral activities whose clinical application is hampered by poor solubility. This study explores the therapeutic potential of an advanced drug delivery system encapsulating 18-ß-gly in poly lactic-co-glycolic acid (PLGA) nanoparticles in addressing the impaired antiviral immunity observed in smokers and COPD patients. Exposure of BCi-NS1.1 human bronchial epithelial cells to cigarette smoke extract (CSE) resulted in reduced expression of critical antiviral chemokines (IP-10, I-TAC, MIP-1α/1ß), mimicking what happens in smokers and COPD patients. Treatment with 18-ß-gly-PLGA nanoparticles partially restored the expression of these chemokines, demonstrating promising therapeutic impact. The nanoparticles increased IP-10, I-TAC, and MIP-1α/1ß levels, exhibiting potential in attenuating the negative effects of cigarette smoke on the antiviral response. This study provides a novel approach to address the impaired antiviral immune response in vulnerable populations, offering a foundation for further investigations and potential therapeutic interventions. Further studies, including a comprehensive in vitro characterization and in vivo testing, are warranted to validate the therapeutic efficacy of 18-ß-gly-PLGA nanoparticles in respiratory disorders associated with compromised antiviral immunity.


Asunto(s)
Ácido Glicirretínico , Nanopartículas , Humanos , Ácido Glicirretínico/farmacología , Ácido Glicirretínico/análogos & derivados , Antivirales/farmacología , Humo/efectos adversos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Línea Celular , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Fumar Cigarrillos/efectos adversos
20.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 343-356, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439806

RESUMEN

Lung cancer is the second most prevalent type of cancer and is responsible for the highest number of cancer-related deaths worldwide. Non-small-cell lung cancer (NSCLC) makes up the majority of lung cancer cases. Zerumbone (ZER) is natural compound commonly found in the roots of Zingiber zerumbet which has recently demonstrated anti-cancer activity in both in vitro and in vivo studies. Despite their medical benefits, ZER has low aqueous solubility, poor GI absorption and oral bioavailability that hinders its effectiveness. Liquid crystalline nanoparticles (LCNs) are novel drug delivery carrier that have tuneable characteristics to enhance and ease the delivery of bioactive compounds. This study aimed to formulate ZER-loaded LCNs and investigate their effectiveness against NSCLC in vitro using A549 lung cancer cells. ZER-LCNs, prepared in the study, inhibited the proliferation and migration of A549 cells. These inhibitory effects were superior to the effects of ZER alone at a concentration 10 times lower than that of free ZER, demonstrating a potent anti-cancer activity of ZER-LCNs. The underlying mechanisms of the anti-cancer effects by ZER-LCNs were associated with the transcriptional regulation of tumor suppressor genes P53 and PTEN, and metastasis-associated gene KRT18. The protein array data showed downregulation of several proliferation associated proteins such as AXL, HER1, PGRN, and BIRC5 and metastasis-associated proteins such as DKK1, CAPG, CTSS, CTSB, CTSD, and PLAU. This study provides evidence of potential for increasing the potency and effectiveness of ZER with LCN formulation and developing ZER-LCNs as a treatment strategy for mitigation and treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas , Sesquiterpenos , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Apoptosis , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA