Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ther ; 29(1): 86-102, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33010230

RESUMEN

Chronic granulomatous disease (CGD) is a rare inherited disorder due to loss-of-function mutations in genes encoding the NADPH oxidase subunits. Hematopoietic stem and progenitor cell (HSPC) gene therapy (GT) using regulated lentiviral vectors (LVs) has emerged as a promising therapeutic option for CGD patients. We performed non-clinical Good Laboratory Practice (GLP) and laboratory-grade studies to assess the safety and genotoxicity of LV targeting myeloid-specific Gp91phox expression in X-linked chronic granulomatous disease (XCGD) mice. We found persistence of gene-corrected cells for up to 1 year, restoration of Gp91phox expression and NADPH oxidase activity in XCGD phagocytes, and reduced tissue inflammation after LV-mediated HSPC GT. Although most of the mice showed no hematological or biochemical toxicity, a small subset of XCGD GT mice developed T cell lymphoblastic lymphoma (2.94%) and myeloid leukemia (5.88%). No hematological malignancies were identified in C57BL/6 mice transplanted with transduced XCGD HSPCs. Integration pattern analysis revealed an oligoclonal composition with rare dominant clones harboring vector insertions near oncogenes in mice with tumors. Collectively, our data support the long-term efficacy of LV-mediated HSPC GT in XCGD mice and provide a safety warning because the chronic inflammatory XCGD background may contribute to oncogenesis.


Asunto(s)
Terapia Genética , Vectores Genéticos/genética , Enfermedad Granulomatosa Crónica/complicaciones , Enfermedad Granulomatosa Crónica/terapia , Neoplasias Hematológicas/etiología , Lentivirus/genética , Animales , Modelos Animales de Enfermedad , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Enfermedad Granulomatosa Crónica/genética , Humanos , Ratones , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo , Factores de Tiempo , Resultado del Tratamiento
2.
J Infect Dis ; 217(6): 933-942, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29216403

RESUMEN

Background: Staphylococcus aureus and Pseudomonas aeruginosa are key bacterial pathogens of the respiratory tract in patients with cystic fibrosis (CF). Although P. aeruginosa chronic bronchial infection is associated with a poorer prognosis, the consequences of S. aureus colonization on CF outcomes are controversial. Methods: In this paper, murine models of infection resembling traits of the CF human airways disease have been revisited using an infection schedule that mimics the sequence of events of pulmonary disease in CF patients. First, mice were infected with S. aureus, embedded in agar beads; this was followed by P. aeruginosa infection and analysis of bacterial load, leukocyte infiltration, and lung tissue damage. Results: We reveal that (1) S. aureus promotes severe lesions including abscess formation, (2) S. aureus increases the risk of subsequent chronic P. aeruginosa respiratory infection, and (3) once the chronic infection has been established, P. aeruginosa influences most of the inflammatory responses independent of S. aureus. Conclusions: Our findings established the significance of S. aureus colonization per se and the impact on the subsequent P. aeruginosa infection. This would point towards a thorough assessment for the need of treatment against S. aureus.


Asunto(s)
Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad , Infecciones del Sistema Respiratorio/microbiología , Infecciones Estafilocócicas/complicaciones , Staphylococcus aureus/patogenicidad , Animales , Enfermedad Crónica , Citocinas/genética , Citocinas/metabolismo , Regulación Bacteriana de la Expresión Génica/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Pseudomonas/complicaciones , Infecciones Estafilocócicas/microbiología
3.
BMC Genomics ; 17: 351, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27169516

RESUMEN

BACKGROUND: P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However, the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown. RESULTS: As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait. Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic (SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and was named P . aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1, Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and inflammatory processes. CONCLUSIONS: We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored to complement human studies.


Asunto(s)
Mapeo Cromosómico/métodos , Redes Reguladoras de Genes , Infecciones por Pseudomonas/genética , Pseudomonas aeruginosa/fisiología , Animales , Modelos Animales de Enfermedad , Ligamiento Genético , Predisposición Genética a la Enfermedad , Humanos , Ratones , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
4.
Environ Microbiol ; 17(11): 4379-93, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25845292

RESUMEN

Pseudomonas aeruginosa is a multi-host opportunistic pathogen causing a wide range of diseases because of the armoury of virulence factors it produces, and it is difficult to eradicate because of its intrinsic resistance to antibiotics. Using an integrated whole-genome approach, we searched for P. aeruginosa virulence genes with multi-host relevance. We constructed a random library of 57 360 Tn5 mutants in P. aeruginosa PAO1-L and screened it in vitro for those showing pleiotropic effects in virulence phenotypes (reduced swarming, exo-protease and pyocyanin production). A set of these pleiotropic mutants were assayed for reduced toxicity in Drosophila melanogaster, Caenorhabditis elegans, human cell lines and mice. Surprisingly, the screening revealed that the virulence of the majority of P. aeruginosa mutants varied between disease models, suggesting that virulence is dependent on the disease model used and hence the host environment. Genomic analysis revealed that these virulence-related genes encoded proteins from almost all functional classes, which were conserved among P. aeruginosa strains. Thus, we provide strong evidence that although P. aeruginosa is capable of infecting a wide range of hosts, many of its virulence determinants are host specific. These findings have important implication when searching for novel anti-virulence targets to develop new treatments against P. aeruginosa.


Asunto(s)
Caenorhabditis elegans/microbiología , Drosophila melanogaster/microbiología , Especificidad del Huésped/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Factores de Virulencia/genética , Animales , Antibacterianos/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Biblioteca de Genes , Genómica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Virulencia/genética
5.
mBio ; 12(2)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879591

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa produces an arsenal of virulence factors causing a wide range of diseases in multiple hosts and is difficult to eradicate due to its intrinsic resistance to antibiotics. With the antibacterial pipeline drying up, antivirulence therapy has become an attractive alternative strategy to the traditional use of antibiotics to treat P. aeruginosa infections. To identify P. aeruginosa genes required for virulence in multiple hosts, a random library of Tn5 mutants in strain PAO1-L was previously screened in vitro for those showing pleiotropic effects in the production of virulence phenotypes. Using this strategy, we identified a Tn5 mutant with an insertion in PA4130 showing reduced levels of a number of virulence traits in vitro Construction of an isogenic mutant in this gene presented results similar to those for the Tn5 mutant. Furthermore, the PA4130 isogenic mutant showed substantial attenuation in disease models of Drosophila melanogaster and Caenorhabditis elegans as well as reduced toxicity in human cell lines. Mice infected with this mutant demonstrated an 80% increased survival rate in acute and agar bead lung infection models. PA4130 codes for a protein with homology to nitrite and sulfite reductases. Overexpression of PA4130 in the presence of the siroheme synthase CysG enabled its purification as a soluble protein. Methyl viologen oxidation assays with purified PA4130 showed that this enzyme is a nitrite reductase operating in a ferredoxin-dependent manner. The preference for nitrite and production of ammonium revealed that PA4130 is an ammonia:ferredoxin nitrite reductase and hence was named NirA.IMPORTANCE The emergence of widespread antimicrobial resistance has led to the need for development of novel therapeutic interventions. Antivirulence strategies are an attractive alternative to classic antimicrobial therapy; however, they require identification of new specific targets which can be exploited in drug discovery programs. The host-specific nature of P. aeruginosa virulence adds complexity to the discovery of these types of targets. Using a sequence of in vitro assays and phylogenetically diverse in vivo disease models, we have identified a PA4130 mutant with reduced production in a number of virulence traits and severe attenuation across all infection models tested. Characterization of PA4130 revealed that it is a ferredoxin-nitrite reductase and hence was named NirA. These results, together with attenuation of nirA mutants in different clinical isolates, high level conservation of its gene product in P. aeruginosa genomes, and the lack of orthologues in human genomes, make NirA an attractive antivirulence target.


Asunto(s)
Nitrito Reductasas/genética , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Factores de Virulencia/genética , Amoníaco/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Caenorhabditis elegans , Línea Celular , Modelos Animales de Enfermedad , Drosophila melanogaster , Ferredoxinas/metabolismo , Biblioteca de Genes , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Nitrito Reductasas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad
6.
Sci Rep ; 6: 36924, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27848994

RESUMEN

Patients with P. aeruginosa airways infection show markedly variable clinical phenotypes likely influenced by genetic backgrounds. Here, we investigated the cellular events involved in resistance and susceptibility to P. aeruginosa chronic infection using genetically distinct inbred mouse strains. As for patients, different murine genotypes revealed variable susceptibility to infection. When directly compared, resistant C3H/HeOuJ and susceptible A/J strains revealed distinct immune responsiveness to the pathogen. In C3H/HeOuJ resistant mice, IL17-producing cells rapidly and transiently infiltrated the infected lung, and this was paralleled by the acute accumulation of alveolar macrophages, bacterial clearance and resolution of infection. In contrast, A/J susceptible mice revealed a more delayed and prolonged lung infiltration by IL17+ and IFNγ+ cells, persistence of innate inflammatory cells and establishment of chronic infection. We conclude that the host genetic background confers diverse immunoreactivity to P. aeruginosa and IL17-producing cells might contribute to the progress of chronic lung infection.


Asunto(s)
Resistencia a la Enfermedad , Predisposición Genética a la Enfermedad , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/inmunología , Animales , Antecedentes Genéticos , Interleucina-17/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Pulmón/patología , Ratones
7.
PLoS One ; 9(9): e106873, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25268734

RESUMEN

Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s) may have a role in the reduction of cell-mediated immunity playing a critical role in the control of P. aeruginosa infection. These results now provide a basis for mapping genomic regions underlying host susceptibility to P. aeruginosa infection.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Inmunidad Celular/genética , Neumonía Bacteriana/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Animales , Carga Bacteriana , Interacciones Huésped-Patógeno/inmunología , Leucocitos/inmunología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones Endogámicos , Neumonía Bacteriana/genética , Neumonía Bacteriana/microbiología , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/microbiología
8.
PLoS One ; 9(3): e89614, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24603807

RESUMEN

Cystic fibrosis (CF) airways disease represents an example of polymicrobial infection whereby different bacterial species can interact and influence each other. In CF patients Staphylococcus aureus is often the initial pathogen colonizing the lungs during childhood, while Pseudomonas aeruginosa is the predominant pathogen isolated in adolescents and adults. During chronic infection, P. aeruginosa undergoes adaptation to cope with antimicrobial therapy, host response and co-infecting pathogens. However, S. aureus and P. aeruginosa often co-exist in the same niche influencing the CF pathogenesis. The goal of this study was to investigate the reciprocal interaction of P. aeruginosa and S. aureus and understand the influence of P. aeruginosa adaptation to the CF lung in order to gain important insight on the interplay occurring between the two main pathogens of CF airways, which is still largely unknown. P. aeruginosa reference strains and eight lineages of clinical strains, including early and late clonal isolates from different patients with CF, were tested for growth inhibition of S. aureus. Next, P. aeruginosa/S. aureus competition was investigated in planktonic co-culture, biofilm, and mouse pneumonia model. P. aeruginosa reference and early strains, isolated at the onset of chronic infection, outcompeted S. aureus in vitro and in vivo models of co-infection. On the contrary, our results indicated a reduced capacity to outcompete S. aureus of P. aeruginosa patho-adaptive strains, isolated after several years of chronic infection and carrying several phenotypic changes temporally associated with CF lung adaptation. Our findings provide relevant information with respect to interspecies interaction and disease progression in CF.


Asunto(s)
Fibrosis Quística/microbiología , Pseudomonas aeruginosa/fisiología , Sistema Respiratorio/microbiología , Staphylococcus aureus/fisiología , Adaptación Fisiológica , Animales , Antibiosis/fisiología , Técnicas Bacteriológicas , Biopelículas , Coinfección/microbiología , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Pseudomonas aeruginosa/clasificación , Sistema Respiratorio/patología , Especificidad de la Especie , Staphylococcus aureus/clasificación , Staphylococcus aureus/patogenicidad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA