Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
PLoS Pathog ; 16(2): e1008170, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32012211

RESUMEN

Bovine African Trypanosomosis is an infectious parasitic disease affecting livestock productivity and thereby impairing the economic development of Sub-Saharan Africa. The most important trypanosome species implicated is T. congolense, causing anemia as most important pathological feature. Using murine models, it was shown that due to the parasite's efficient immune evasion mechanisms, including (i) antigenic variation of the variable surface glycoprotein (VSG) coat, (ii) induction of polyclonal B cell activation, (iii) loss of B cell memory and (iv) T cell mediated immunosuppression, disease prevention through vaccination has so far been impossible. In trypanotolerant models a strong, early pro-inflammatory immune response involving IFN-γ, TNF and NO, combined with a strong humoral anti-VSG response, ensures early parasitemia control. This potent protective inflammatory response is counterbalanced by the production of the anti-inflammatory cytokine IL-10, which in turn prevents early death of the host from uncontrolled hyper-inflammation-mediated immunopathologies. Though at this stage different hematopoietic cells, such as NK cells, T cells and B cells as well as myeloid cells (i.e. alternatively activated myeloid cells (M2) or Ly6c- monocytes), were found to produce IL-10, the contribution of non-hematopoietic cells as potential IL-10 source during experimental T. congolense infection has not been addressed. Here, we report for the first time that during the chronic stage of T. congolense infection non-hematopoietic cells constitute an important source of IL-10. Our data shows that hepatocyte-derived IL-10 is mandatory for host survival and is crucial for the control of trypanosomosis-induced inflammation and associated immunopathologies such as anemia, hepatosplenomegaly and excessive tissue injury.


Asunto(s)
Hepatocitos , Evasión Inmune , Interleucina-10/inmunología , Trypanosoma congolense , Tripanosomiasis Africana , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Hepatocitos/inmunología , Hepatocitos/parasitología , Hepatocitos/patología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Activación de Linfocitos , Ratones , Monocitos/inmunología , Monocitos/patología , Linfocitos T/inmunología , Linfocitos T/patología , Trypanosoma congolense/inmunología , Trypanosoma congolense/patogenicidad , Tripanosomiasis Africana/inmunología , Tripanosomiasis Africana/patología
2.
Parasite Immunol ; 41(10): e12664, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31325372

RESUMEN

Trypanosomosis is a chronic parasitic infection, affecting both humans and livestock. A common hallmark of experimental murine infections is the occurrence of inflammation and the associated remodelling of the spleen compartment. The latter involves the depletion of several lymphocyte populations, the induction of T-cell-mediated immune suppression, and the activation of monocyte/macrophage cell populations. Here, we show that in experimental T b brucei infections in mice, these changes are accompanied by the alteration of the spleen neutrophil compartment. Indeed, mature neutrophils are rapidly recruited to the spleen, and cell numbers remain elevated during the entire infection. Following the second peak of parasitemia, the neutrophil cell influx coincides with the rapid reduction of splenic marginal zone (MZ)B and follicular (Fo)B cells, as well as CD8+ T and NK1.1+ cells, the latter encompassing both natural killer (NK) and natural killer T (NKT) cells. This report is the first to show a comprehensive overview of all alterations in spleen cell populations, measured with short intervals throughout the entire course of an experimental T b brucei infection. These data provide new insights into the dynamic interlinked changes in spleen cell numbers associated with trypanosomosis-associated immunopathology.


Asunto(s)
Neutrófilos/inmunología , Trypanosoma brucei brucei/fisiología , Animales , Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Células T Asesinas Naturales/inmunología , Parasitemia/inmunología , Bazo/citología , Bazo/inmunología , Tripanosomiasis Africana/inmunología
3.
PLoS Pathog ; 12(7): e1005744, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27441553

RESUMEN

Tsetse flies are the sole vectors of Trypanosoma brucei parasites that cause sleeping sickness. Our knowledge on the early interface between the infective metacyclic forms and the mammalian host skin is currently highly limited. Glossina morsitans flies infected with fluorescently tagged T. brucei parasites were used in this study to initiate natural infections in mice. Metacyclic trypanosomes were found to be highly infectious through the intradermal route in sharp contrast with blood stream form trypanosomes. Parasite emigration from the dermal inoculation site resulted in detectable parasite levels in the draining lymph nodes within 18 hours and in the peripheral blood within 42 h. A subset of parasites remained and actively proliferated in the dermis. By initiating mixed infections with differentially labeled parasites, dermal parasites were unequivocally shown to arise from the initial inoculum and not from a re-invasion from the blood circulation. Scanning electron microscopy demonstrated intricate interactions of these skin-residing parasites with adipocytes in the connective tissue, entanglement by reticular fibers of the periadipocytic baskets and embedment between collagen bundles. Experimental transmission experiments combined with molecular parasite detection in blood fed flies provided evidence that dermal trypanosomes can be acquired from the inoculation site immediately after the initial transmission. High resolution thermographic imaging also revealed that intradermal parasite expansion induces elevated skin surface temperatures. Collectively, the dermis represents a delivery site of the highly infective metacyclic trypanosomes from which the host is systemically colonized and where a proliferative subpopulation remains that is physically constrained by intricate interactions with adipocytes and collagen fibrous structures.


Asunto(s)
Dermis/parasitología , Interacciones Huésped-Parásitos/fisiología , Insectos Vectores/parasitología , Trypanosoma brucei brucei , Moscas Tse-Tse/parasitología , Animales , Mordeduras y Picaduras , Modelos Animales de Enfermedad , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa
4.
PLoS Pathog ; 12(9): e1005862, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27632207

RESUMEN

Animal African trypanosomosis is a major threat to the economic development and human health in sub-Saharan Africa. Trypanosoma congolense infections represent the major constraint in livestock production, with anemia as the major pathogenic lethal feature. The mechanisms underlying anemia development are ill defined, which hampers the development of an effective therapy. Here, the contribution of the erythropoietic and erythrophagocytic potential as well as of hemodilution to the development of T. congolense-induced anemia were addressed in a mouse model of low virulence relevant for bovine trypanosomosis. We show that in infected mice, splenic extramedullary erythropoiesis could compensate for the chronic low-grade type I inflammation-induced phagocytosis of senescent red blood cells (RBCs) in spleen and liver myeloid cells, as well as for the impaired maturation of RBCs occurring in the bone marrow and spleen. Rather, anemia resulted from hemodilution. Our data also suggest that the heme catabolism subsequent to sustained erythrophagocytosis resulted in iron accumulation in tissue and hyperbilirubinemia. Moreover, hypoalbuminemia, potentially resulting from hemodilution and liver injury in infected mice, impaired the elimination of toxic circulating molecules like bilirubin. Hemodilutional thrombocytopenia also coincided with impaired coagulation. Combined, these effects could elicit multiple organ failure and uncontrolled bleeding thus reduce the survival of infected mice. MIF (macrophage migrating inhibitory factor), a potential pathogenic molecule in African trypanosomosis, was found herein to promote erythrophagocytosis, to block extramedullary erythropoiesis and RBC maturation, and to trigger hemodilution. Hence, these data prompt considering MIF as a potential target for treatment of natural bovine trypanosomosis.


Asunto(s)
Anemia/metabolismo , Eritropoyesis , Hematopoyesis Extramedular , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Trypanosoma congolense/metabolismo , Tripanosomiasis Africana/metabolismo , Anemia/genética , Anemia/parasitología , Anemia/patología , Animales , Médula Ósea/metabolismo , Médula Ósea/parasitología , Médula Ósea/patología , Bovinos , Modelos Animales de Enfermedad , Eritrocitos/metabolismo , Eritrocitos/parasitología , Eritrocitos/patología , Hemodilución , Humanos , Oxidorreductasas Intramoleculares/genética , Factores Inhibidores de la Migración de Macrófagos/genética , Ratones , Ratones Noqueados , Bazo/metabolismo , Bazo/parasitología , Bazo/patología , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/parasitología , Trombocitopenia/patología , Tripanosomiasis Africana/genética , Tripanosomiasis Africana/patología
5.
J Immunol ; 196(9): 3780-93, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27036913

RESUMEN

The mucosal immune system represents the first line of defense against Brucella infection in nature. We used genetically deficient mice to identify the lymphocytes and signaling pathways implicated in the control of primary and secondary intranasal infection with B. melitensis Our analysis of primary infection demonstrated that the effectors implicated differ at the early and late stages and are dependent on the organ. TCR-δ, TAP1, and IL-17RA deficiency specifically affects early control of Brucella in the lungs, whereas MHC class II (MHCII) and IFN-γR deficiency impairs late control in the lungs, spleen, and liver. Interestingly, IL-12p35(-/-) mice display enhanced Brucella growth in the spleen but not in the lungs or liver. Secondary intranasal infections are efficiently contained in the lung. In contrast to an i.p. infectious model, in which IL-12p35, MHCII, and B cells are strictly required for the control of secondary infection, we observed that only TCR-ß deficiency or simultaneous neutralization of IL-12p35- and IL-17A-dependent pathways impairs the memory protective response against a secondary intranasal infection. Protection is not affected by TCR-δ, MHCII, TAP1, B cell, IL-17RA, or IL-12p35 deficiency, suggesting that CD4(+) and CD8(+) α/ß(+) T cells are sufficient to mount a protective immune response and that an IL-17A-mediated response can compensate for the partial deficiency of an IFN-γ-mediated response to control a Brucella challenge. These findings demonstrate that the nature of the protective memory response depends closely on the route of infection and highlights the role of IFN-γ-and IL-17RA-mediated responses in the control of mucosal infection by Brucella.


Asunto(s)
Brucella melitensis/inmunología , Brucelosis/inmunología , Linfocitos T CD8-positivos/inmunología , Interferón gamma/metabolismo , Senos Paranasales/microbiología , Receptores de Interleucina-17/metabolismo , Animales , Células Cultivadas , Inmunidad Mucosa , Memoria Inmunológica , Interferón gamma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Interleucina-17/genética , Transducción de Señal
6.
Infect Immun ; 85(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28808159

RESUMEN

The spleen is known as an important filter for blood-borne pathogens that are trapped by specialized macrophages in the marginal zone (MZ): the CD209+ MZ macrophages (MZMs) and the CD169+ marginal metallophilic macrophages (MMMs). Acute systemic infection strongly impacts MZ populations and the location of T and B lymphocytes. This phenomenon has been linked to reduced chemokine secretion by stromal cells. Brucella spp. are the causative agent of brucellosis, a widespread zoonotic disease. Here, we used Brucella melitensis infection as a model to investigate the impact of chronic stealth infection on splenic MZ macrophage populations. During the late phase of Brucella infection, we observed a loss of both MZMs and MMMs, with a durable disappearance of MZMs, leading to a reduction of the ability of the spleen to take up soluble antigens, beads, and unrelated bacteria. This effect appears to be selective as every other lymphoid and myeloid population analyzed increased during infection, which was also observed following Brucella abortus and Brucella suis infection. Comparison of wild-type and deficient mice suggested that MZ macrophage population loss is dependent on interferon gamma (IFN-γ) receptor but independent of T cells or tumor necrosis factor alpha receptor 1 (TNF-αR1) signaling pathways and is not correlated to an alteration of CCL19, CCL21, and CXCL13 chemokine mRNA expression. Our results suggest that MZ macrophage populations are particularly sensitive to persistent low-level IFN-γ-mediated inflammation and that Brucella infection could reduce the ability of the spleen to perform certain MZM- and MMM-dependent tasks, such as antigen delivery to lymphocytes and control of systemic infection.


Asunto(s)
Brucelosis/inmunología , Interacciones Huésped-Patógeno , Interferón gamma/inmunología , Macrófagos/inmunología , Receptores de Interferón/inmunología , Bazo/inmunología , Animales , Antibacterianos/farmacología , Linfocitos B/inmunología , Linfocitos B/microbiología , Brucella abortus/efectos de los fármacos , Brucella abortus/inmunología , Brucella abortus/patogenicidad , Brucella melitensis/efectos de los fármacos , Brucella melitensis/inmunología , Brucella melitensis/patogenicidad , Brucella suis/efectos de los fármacos , Brucella suis/inmunología , Brucella suis/patogenicidad , Brucelosis/tratamiento farmacológico , Brucelosis/genética , Brucelosis/microbiología , Quimiocina CCL19/genética , Quimiocina CCL19/inmunología , Quimiocina CCL21/genética , Quimiocina CCL21/inmunología , Quimiocina CXCL13/genética , Quimiocina CXCL13/inmunología , Enfermedad Crónica , Regulación de la Expresión Génica , Interferón gamma/genética , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/inmunología , Receptores de Interferón/deficiencia , Receptores de Interferón/genética , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Rifampin/farmacología , Transducción de Señal , Bazo/microbiología , Estreptomicina/farmacología , Linfocitos T/inmunología , Linfocitos T/microbiología , Receptor de Interferón gamma
7.
PLoS Pathog ; 11(6): e1004964, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26070118

RESUMEN

African trypanosomes are the causative agents of Human African Trypanosomosis (HAT/Sleeping Sickness) and Animal African Trypanosomosis (AAT/Nagana). A common hallmark of African trypanosome infections is inflammation. In murine trypanosomosis, the onset of inflammation occurs rapidly after infection and is manifested by an influx of myeloid cells in both liver and spleen, accompanied by a burst of serum pro-inflammatory cytokines. Within 48 hours after reaching peak parasitemia, acute anemia develops and the percentage of red blood cells drops by 50%. Using a newly developed in vivo erythrophagocytosis assay, we recently demonstrated that activated cells of the myeloid phagocytic system display enhanced erythrophagocytosis causing acute anemia. Here, we aimed to elucidate the mechanism and immune pathway behind this phenomenon in a murine model for trypanosomosis. Results indicate that IFNγ plays a crucial role in the recruitment and activation of erythrophagocytic myeloid cells, as mice lacking the IFNγ receptor were partially protected against trypanosomosis-associated inflammation and acute anemia. NK and NKT cells were the earliest source of IFNγ during T. b. brucei infection. Later in infection, CD8+ and to a lesser extent CD4+ T cells become the main IFNγ producers. Cell depletion and transfer experiments indicated that during infection the absence of NK, NKT and CD8+ T cells, but not CD4+ T cells, resulted in a reduced anemic phenotype similar to trypanosome infected IFNγR-/- mice. Collectively, this study shows that NK, NKT and CD8+ T cell-derived IFNγ is a critical mediator in trypanosomosis-associated pathology, driving enhanced erythrophagocytosis by myeloid phagocytic cells and the induction of acute inflammation-associated anemia.


Asunto(s)
Anemia/inmunología , Eritrocitos/patología , Interferón gamma/inmunología , Células Mieloides/inmunología , Fagocitosis/inmunología , Tripanosomiasis Africana/inmunología , Traslado Adoptivo , Animales , Linfocitos T CD8-positivos/inmunología , Separación Celular , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células T Asesinas Naturales/inmunología , Tripanosomiasis Africana/complicaciones
8.
J Immunol ; 192(8): 3740-52, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24646742

RESUMEN

Brucella spp are intracellular bacteria that cause brucellosis, one of the most common zoonoses in the world. Given the serious medical consequences of this disease, a safe and effective human vaccine is urgently needed. Efforts to develop this vaccine have been hampered by our lack of understanding of what constitutes a protective memory response against Brucella. In this study, we characterize the cells and signaling pathways implicated in the generation of a protective immune memory response following priming by the injection of heat-killed or live Brucella melitensis 16M. Using a panel of gene-deficient mice, we demonstrated that during a secondary recall response, both the Brucella-specific humoral response and CD4+ Th1 cells must act together to confer protective immunity in the spleen to B. melitensis infection. Humoral protective immunity is induced by the inoculation of both heat-killed and live bacteria, and its development does not require T cells, MyD88/IL-12p35 signaling pathways, or an activation-induced deaminase-mediated isotype switch. In striking contrast, the presence of memory IFN-γ-producing CD4+ Th1 cells requires the administration of live bacteria and functional MyD88/IL-12p35 pathways. In summary, our work identifies several immune markers closely associated with protective immune memory and could help to define a rational strategy to obtain an effective human vaccine against brucellosis.


Asunto(s)
Brucella melitensis/inmunología , Brucelosis/inmunología , Inmunidad Humoral , Células TH1/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Especificidad de Anticuerpos/inmunología , Bacteriemia/inmunología , Bacteriemia/prevención & control , Vacuna contra la Brucelosis/administración & dosificación , Vacuna contra la Brucelosis/inmunología , Brucelosis/metabolismo , Brucelosis/prevención & control , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Antígenos H-2/inmunología , Memoria Inmunológica , Interferón gamma/biosíntesis , Interleucina-12/metabolismo , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , Fenotipo , Transducción de Señal , Bazo/citología , Bazo/inmunología , Bazo/microbiología , Células TH1/metabolismo , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas Vivas no Atenuadas/administración & dosificación , Vacunas Vivas no Atenuadas/inmunología
9.
Parasitology ; 142(3): 417-27, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25479093

RESUMEN

African trypanosomes have been around for more than 100 million years, and have adapted to survival in a very wide host range. While various indigenous African mammalian host species display a tolerant phenotype towards this parasitic infection, and hence serve as perpetual reservoirs, many commercially important livestock species are highly disease susceptible. When considering humans, they too display a highly sensitive disease progression phenotype for infections with Trypanosoma brucei rhodesiense or Trypanosoma brucei gambiense, while being intrinsically resistant to infections with other trypanosome species. As extracellular trypanosomes proliferate and live freely in the bloodstream and lymphatics, they are constantly exposed to the immune system. Due to co-evolution, this environment however no longer poses a hostile threat, but has become the niche environment where trypanosomes thrive and obligatory await transmission through the bites of tsetse flies or other haematophagic vectors, ideally without causing severe side infection-associated pathology to their host. Hence, African trypanosomes have acquired various mechanisms to manipulate and control the host immune response, evading effective elimination. Despite the extensive research into trypanosomosis over the past 40 years, many aspects of the anti-parasite immune response remain to be solved and no vaccine is currently available. Here we review the recent work on the different escape mechanisms employed by African Trypanosomes to ensure infection chronicity and transmission potential.


Asunto(s)
Interacciones Huésped-Parásitos/inmunología , Trypanosoma brucei brucei/fisiología , Tripanosomiasis Africana , Animales , Variación Antigénica/inmunología , Humanos , Evasión Inmune/fisiología , Inmunidad Innata/fisiología , Región Variable de Inmunoglobulina/inmunología , Insectos Vectores/parasitología , Trypanosoma brucei brucei/inmunología , Tripanosomiasis Africana/inmunología , Tripanosomiasis Africana/parasitología , Tripanosomiasis Africana/transmisión , Moscas Tse-Tse/parasitología
10.
Infect Immun ; 82(9): 3927-38, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25001604

RESUMEN

Brucella spp. are facultative intracellular Gram-negative coccobacilli responsible for brucellosis, a worldwide zoonosis. We observed that Brucella melitensis is able to persist for several weeks in the blood of intraperitoneally infected mice and that transferred blood at any time point tested is able to induce infection in naive recipient mice. Bacterial persistence in the blood is dramatically impaired by specific antibodies induced following Brucella vaccination. In contrast to Bartonella, the type IV secretion system and flagellar expression are not critically required for the persistence of Brucella in blood. ImageStream analysis of blood cells showed that following a brief extracellular phase, Brucella is associated mainly with the erythrocytes. Examination by confocal microscopy and transmission electron microscopy formally demonstrated that B. melitensis is able to invade erythrocytes in vivo. The bacteria do not seem to multiply in erythrocytes and are found free in the cytoplasm. Our results open up new areas for investigation and should serve in the development of novel strategies for the treatment or prophylaxis of brucellosis. Invasion of erythrocytes could potentially protect the bacterial cells from the host's immune response and hamper antibiotic treatment and suggests possible Brucella transmission by bloodsucking insects in nature.


Asunto(s)
Brucella melitensis/inmunología , Eritrocitos/inmunología , Animales , Sistemas de Secreción Bacterianos/inmunología , Vacuna contra la Brucelosis/inmunología , Brucelosis/inmunología , Brucelosis/microbiología , Eritrocitos/microbiología , Flagelos/inmunología , Flagelos/microbiología , Ratones , Ratones Endogámicos C57BL
11.
J Virol ; 87(12): 6911-24, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23596287

RESUMEN

Interleukin-22 (IL-22) has redundant, protective, or pathogenic functions during autoimmune, inflammatory, and infectious diseases. Here, we addressed the potential role of IL-22 in host defense and pathogenesis during lethal and sublethal respiratory H3N2 influenza A virus (IAV) infection. We show that IL-22, as well as factors associated with its production, are expressed in the lung tissue during the early phases of IAV infection. Our data indicate that retinoic acid receptor-related orphan receptor-γt (RORγt)-positive αß and γδ T cells, as well as innate lymphoid cells, expressed enhanced Il22 transcripts as early as 2 days postinfection. During lethal or sublethal IAV infections, endogenous IL-22 played no role in the control of IAV replication and in the development of the IAV-specific CD8(+) T cell response. During lethal infection, where wild-type (WT) mice succumbed to severe pneumonia, the lack of IL-22 did not accelerate or delay IAV-associated pathogenesis and animal death. In stark contrast, during sublethal IAV infection, IL-22-deficient animals had enhanced lung injuries and showed a lower airway epithelial integrity relative to WT littermates. Of importance, the protective effect of endogenous IL-22 in pulmonary damages was associated with a more controlled secondary bacterial infection. Indeed, after challenge with Streptococcus pneumoniae, IAV-experienced Il22(-/-) animals were more susceptible than WT controls in terms of survival rate and bacterial burden in the lungs. Together, IL-22 plays no major role during lethal influenza but is beneficial during sublethal H3N2 IAV infection, where it limits lung inflammation and subsequent bacterial superinfections.


Asunto(s)
Infecciones Bacterianas/inmunología , Coinfección/inmunología , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Interleucinas/inmunología , Infecciones por Orthomyxoviridae/inmunología , Neumonía/inmunología , Animales , Infecciones Bacterianas/microbiología , Coinfección/microbiología , Humanos , Subtipo H3N2 del Virus de la Influenza A/inmunología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Neumonía/patología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/microbiología , Streptococcus pneumoniae/patogenicidad , Interleucina-22
12.
PLoS Pathog ; 8(3): e1002575, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479178

RESUMEN

Brucella are facultative intracellular bacteria that chronically infect humans and animals causing brucellosis. Brucella are able to invade and replicate in a broad range of cell lines in vitro, however the cells supporting bacterial growth in vivo are largely unknown. In order to identify these, we used a Brucella melitensis strain stably expressing mCherry fluorescent protein to determine the phenotype of infected cells in spleen and liver, two major sites of B. melitensis growth in mice. In both tissues, the majority of primary infected cells expressed the F4/80 myeloid marker. The peak of infection correlated with granuloma development. These structures were mainly composed of CD11b⁺ F4/80⁺ MHC-II⁺ cells expressing iNOS/NOS2 enzyme. A fraction of these cells also expressed CD11c marker and appeared similar to inflammatory dendritic cells (DCs). Analysis of genetically deficient mice revealed that differentiation of iNOS⁺ inflammatory DC, granuloma formation and control of bacterial growth were deeply affected by the absence of MyD88, IL-12p35 and IFN-γ molecules. During chronic phase of infection in susceptible mice, we identified a particular subset of DC expressing both CD11c and CD205, serving as a reservoir for the bacteria. Taken together, our results describe the cellular nature of immune effectors involved during Brucella infection and reveal a previously unappreciated role for DC subsets, both as effectors and reservoir cells, in the pathogenesis of brucellosis.


Asunto(s)
Brucella/inmunología , Brucelosis/inmunología , Células Dendríticas/inmunología , Inmunidad Innata , Enfermedades Pulmonares/inmunología , Animales , Biomarcadores/metabolismo , Brucella/patogenicidad , Brucelosis/microbiología , Brucelosis/patología , Separación Celular , Células Dendríticas/microbiología , Células Dendríticas/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Hígado/inmunología , Hígado/microbiología , Hígado/patología , Enfermedades Pulmonares/microbiología , Enfermedades Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fenotipo , Bazo/inmunología , Bazo/microbiología , Bazo/patología
13.
Nat Commun ; 15(1): 1779, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413606

RESUMEN

Human African trypanosomiasis or sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is characterized by the manipulation of the host's immune response to ensure parasite invasion and persistence. Uncovering key molecules that support parasite establishment is a prerequisite to interfere with this process. We identified Q586B2 as a T. brucei protein that induces IL-10 in myeloid cells, which promotes parasite infection invasiveness. Q586B2 is expressed during all T. brucei life stages and is conserved in all Trypanosomatidae. Deleting the Q586B2-encoding Tb927.6.4140 gene in T. brucei results in a decreased peak parasitemia and prolonged survival, without affecting parasite fitness in vitro, yet promoting short stumpy differentiation in vivo. Accordingly, neutralization of Q586B2 with newly generated nanobodies could hamper myeloid-derived IL-10 production and reduce parasitemia. In addition, immunization with Q586B2 delays mortality upon a challenge with various trypanosomes, including Trypanosoma cruzi. Collectively, we uncovered a conserved protein playing an important regulatory role in Trypanosomatid infection establishment.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma cruzi , Tripanosomiasis Africana , Animales , Humanos , Trypanosoma brucei brucei/genética , Interleucina-10/genética , Factores de Virulencia , Parasitemia/parasitología , Tripanosomiasis Africana/parasitología
14.
J Exp Med ; 204(5): 1217-25, 2007 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-17485516

RESUMEN

The salivary glands represent a major site of cytomegalovirus replication and transmission to other hosts. Despite control of viral infection by strong T cell responses in visceral organs cytomegalovirus replication continues in the salivary glands of mice, suggesting that the virus exploits the mucosal microenvironment. Here, we show that T cell immunity in the salivary glands is limited by the induction of CD4 T cells expressing the regulatory cytokine interleukin (IL)-10. Blockade of IL-10 receptor (IL-10R) with an antagonist antibody dramatically reduced viral load in the salivary glands, but not in the spleen. The mucosa-specific protection afforded by IL-10R blockade was associated with an increased accumulation of CD4 T cells expressing interferon gamma, suggesting that IL-10R signaling limits effector T cell differentiation. Consistent with this, an agonist antibody targeting the tumor necrosis factor receptor superfamily member OX40 (TNFRSF4) enhanced effector T cell differentiation and increased the number of interferon gamma-producing T cells, thus limiting virus replication in the salivary glands. Collectively, the results indicate that modulating effector T cell differentiation can counteract pathogen exploitation of the mucosa, thus limiting persistent virus replication and transmission.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/inmunología , Infecciones por Herpesviridae/inmunología , Interleucina-10/metabolismo , Muromegalovirus/fisiología , Glándulas Salivales/inmunología , Replicación Viral/fisiología , Animales , Anticuerpos/farmacología , Linfocitos T CD4-Positivos/inmunología , Cartilla de ADN , Femenino , Citometría de Flujo , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Muromegalovirus/inmunología , Receptores de Interleucina-10/antagonistas & inhibidores , Receptores OX40/agonistas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Glándulas Salivales/virología
15.
Infect Immun ; 80(12): 4271-80, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23006848

RESUMEN

Brucella spp. are facultative intracellular bacterial pathogens responsible for brucellosis, a worldwide zoonosis that causes abortion in domestic animals and chronic febrile disease associated with serious complications in humans. There is currently no approved vaccine against human brucellosis, and antibiotic therapy is long and costly. Development of a safe protective vaccine requires a better understanding of the roles played by components of adaptive immunity in the control of Brucella infection. The importance of lymphocyte subsets in the control of Brucella growth has been investigated separately by various research groups and remains unclear or controversial. Here, we used a large panel of genetically deficient mice to compare the importance of B cells, transporter associated with antigen processing (TAP-1), and major histocompatibility complex class II-dependent pathways of antigen presentation as well as T helper 1 (Th1), Th2, and Th17-mediated responses on the immune control of Brucella melitensis 16 M infection. We clearly confirmed the key function played by gamma interferon (IFN-γ)-producing Th1 CD4(+) T cells in the control of B. melitensis infection, whereas IFN-γ-producing CD8(+) T cells or B cell-mediated humoral immunity plays only a modest role in the clearance of bacteria during primary infection. In the presence of a Th1 response, Th2 or Th17 responses do not really develop or play a positive or negative role during the course of B. melitensis infection. On the whole, these results could improve our ability to develop protective vaccines or therapeutic treatments against brucellosis.


Asunto(s)
Brucella melitensis/patogenicidad , Brucelosis/inmunología , Linfocitos T CD4-Positivos/inmunología , Interferón gamma/biosíntesis , Células TH1/inmunología , Animales , Linfocitos B/inmunología , Brucella melitensis/inmunología , Brucelosis/microbiología , Brucelosis/prevención & control , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Células Th17/inmunología , Células Th2/inmunología
16.
Front Immunol ; 13: 865395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464430

RESUMEN

African trypanosomes are extracellular flagellated unicellular protozoan parasites transmitted by tsetse flies and causing Sleeping Sickness disease in humans and Nagana disease in cattle and other livestock. These diseases are usually characterized by the development of a fatal chronic inflammatory disease if left untreated. During African trypanosome infection and many other infectious diseases, the immune response is mediating a see-saw balance between effective/protective immunity and excessive infection-induced inflammation that can cause collateral tissue damage. African trypanosomes are known to trigger a strong type I pro-inflammatory response, which contributes to peak parasitaemia control, but this can culminate into the development of immunopathologies, such as anaemia and liver injury, if not tightly controlled. In this context, the macrophage migration inhibitory factor (MIF) and the interleukin-10 (IL-10) cytokines may operate as a molecular "Yin-Yang" in the modulation of the host immune microenvironment during African trypanosome infection, and possibly other infectious diseases. MIF is a pleiotropic pro-inflammatory cytokine and critical upstream mediator of immune and inflammatory responses, associated with exaggerated inflammation and immunopathology. For example, it plays a crucial role in the pro-inflammatory response against African trypanosomes and other pathogens, thereby promoting the development of immunopathologies. On the other hand, IL-10 is an anti-inflammatory cytokine, acting as a master regulator of inflammation during both African trypanosomiasis and other diseases. IL-10 is crucial to counteract the strong MIF-induced pro-inflammatory response, leading to pathology control. Hence, novel strategies capable of blocking MIF and/or promoting IL-10 receptor signaling pathways, could potentially be used as therapy to counteract immunopathology development during African trypanosome infection, as well as during other infectious conditions. Together, this review aims at summarizing the current knowledge on the opposite immunopathological molecular "Yin-Yang" switch roles of MIF and IL-10 in the modulation of the host immune microenvironment during infection, and more particularly during African trypanosomiasis as a paradigm.


Asunto(s)
Enfermedades Transmisibles , Factores Inhibidores de la Migración de Macrófagos , Trypanosoma , Tripanosomiasis Africana , Animales , Bovinos , Interleucina-10 , Parasitemia , Yin-Yang
17.
Leukemia ; 36(10): 2430-2442, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36042317

RESUMEN

Activation-induced cytidine deaminase (AID) has been implicated as both a positive and a negative factor in the progression of B cell chronic lymphocytic leukemia (CLL), but the role that it plays in the development and progression of this disease is still unclear. We generated an AID knockout CLL mouse model, AID-/-/Eµ-TCL1, and found that these mice die significantly earlier than their AID-proficient counterparts. AID-deficient CLL cells exhibit a higher ER stress response compared to Eµ-TCL1 controls, particularly through activation of the IRE1/XBP1s pathway. The increased production of secretory IgM in AID-deficient CLL cells contributes to their elevated expression levels of XBP1s, while secretory IgM-deficient CLL cells express less XBP1s. This increase in XBP1s in turn leads AID-deficient CLL cells to exhibit higher levels of B cell receptor signaling, supporting leukemic growth and survival. Further, AID-/-/Eµ-TCL1 CLL cells downregulate the tumor suppressive SMAD1/S1PR2 pathway and have altered homing to non-lymphoid organs. Notably, CLL cells from patients with IgHV-unmutated disease express higher levels of XBP1s mRNA compared to those from patients with IgHV-mutated CLL. Our studies thus reveal novel mechanisms by which the loss of AID leads to worsened CLL and may explain why unmutated CLL is more aggressive than mutated CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Animales , Citidina Desaminasa/genética , Leucemia Linfocítica Crónica de Células B/patología , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas , ARN Mensajero/genética , Receptores de Antígenos de Linfocitos B/genética
18.
PLoS Pathog ; 5(6): e1000494, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19557162

RESUMEN

Leishmania major parasites reside and multiply in late endosomal compartments of host phagocytic cells. Immune control of Leishmania growth absolutely requires expression of inducible Nitric Oxide Synthase (iNOS/NOS2) and subsequent production of NO. Here, we show that CD11b+ CD11c+ Ly-6C+ MHC-II+ cells are the main iNOS-producing cells in the footpad lesion and in the draining lymph node of Leishmania major-infected C57BL/6 mice. These cells are phenotypically similar to iNOS-producing inflammatory DC (iNOS-DC) observed in the mouse models of Listeria monocytogenes and Brucella melitensis infection. The use of DsRed-expressing parasites demonstrated that these iNOS-producing cells are the major infected population in the lesions and the draining lymph nodes. Analysis of various genetically deficient mouse strains revealed the requirement of CCR2 expression for the recruitment of iNOS-DC in the draining lymph nodes, whereas their activation is strongly dependent on CD40, IL-12, IFN-gamma and MyD88 molecules with a partial contribution of TNF-alpha and TLR9. In contrast, STAT-6 deficiency enhanced iNOS-DC recruitment and activation in susceptible BALB/c mice, demonstrating a key role for IL-4 and IL-13 as negative regulators. Taken together, our results suggest that iNOS-DC represent a major class of Th1-regulated effector cell population and constitute the most frequent infected cell type during chronic Leishmania major infection phase of C57BL/6 resistant mice.


Asunto(s)
Células Dendríticas/enzimología , Leishmania major/inmunología , Leishmaniasis Cutánea/inmunología , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Animales , Enfermedad Crónica , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/parasitología , Citometría de Flujo , Inflamación/enzimología , Inflamación/parasitología , Leishmaniasis Cutánea/enzimología , Leishmaniasis Cutánea/parasitología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fenotipo , Receptores CCR2/metabolismo , Estadísticas no Paramétricas
19.
J Immunol ; 182(10): 6278-86, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19414781

RESUMEN

Vaccinia virus (VACV) elicits a robust CD8 T cell response that plays an important role in host resistance. To date, there is little information on the molecules that are essential to generate large pools of VACV-specific effector CD8 T cells. In this study, we show that the adaptor molecule MyD88 is critical for the magnitude of primary CD8 T cell responses to both dominant and subdominant VACV epitopes. MyD88(-/-) mice exhibit profound reduction in CD8 T cell expansion and antiviral cytokine production. Surprisingly, the defect was not due to impaired APC function, as MyD88(-/-) dendritic cells matured normally and were able to promote strong CD8 T cell priming following VACV infection. Rather, adoptive transfer experiments demonstrated that intrinsic MyD88-dependent pathways in CD8 T cells were critical. MyD88-deficient CD8 T cells failed to accumulate in wild-type hosts and poor expansion of MyD88-deficient VACV-specific CD8 T cells resulted after virus infection. In contrast, no defect was evident in the absence of TRIF, TLR2, TLR4, TLR9, and IL-1R. Together, our results highlight an important role for MyD88 in initial antiviral CD8 T cell responses and suggest that targeting this pathway may be useful in promoting and sustaining anti-VACV immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Vaccinia/inmunología , Traslado Adoptivo , Animales , Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas/inmunología , Citometría de Flujo , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Virus Vaccinia/inmunología
20.
Cytokine Growth Factor Rev ; 19(3-4): 277-84, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18511331

RESUMEN

Dendritic cells (DC) constitute the most potent antigen presenting cells of the immune system, playing a key role bridging innate and adaptive immune responses. Specialized DC subsets differ depending on their origin, tissue location and the influence of trophic factors, the latter remain to be fully understood. Myeloid-associated lymphotoxin-beta receptor (LTbetaR) signaling is required for the local proliferation of lymphoid tissue DC. This review focuses on the LTbetaR signaling cascade as a crucial positive trophic signal in the homeostasis of DC subsets. The noncanonical coreceptor pathway comprised of the immunoglobulin (Ig) superfamily member, B and T lymphocyte attenuator (BTLA) and TNFR superfamily member, herpesvirus entry mediator (HVEM) counter regulates the trophic signaling by LTbetaR. Together both pathways form an integrated signaling circuit achieving homeostasis of DC subsets.


Asunto(s)
Células Dendríticas/inmunología , Receptor beta de Linfotoxina/metabolismo , Receptores Inmunológicos/metabolismo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal , Animales , Homeostasis , Ratones , FN-kappa B/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA