Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(7): 612-623, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38176734

RESUMEN

Telomeres are nucleoprotein structures that protect the chromosome ends from degradation and fusion. Telomerase is a ribonucleoprotein complex essential to maintain the length of telomeres. Germline defects that lead to short and/or dysfunctional telomeres cause telomere biology disorders (TBDs), a group of rare and heterogeneous Mendelian diseases including pulmonary fibrosis, dyskeratosis congenita, and Høyeraal-Hreidarsson syndrome. TPP1, a telomeric factor encoded by the gene ACD, recruits telomerase at telomere and stimulates its activity via its TEL-patch domain that directly interacts with TERT, the catalytic subunit of telomerase. TBDs due to TPP1 deficiency have been reported only in 11 individuals. We here report four unrelated individuals with a wide spectrum of TBD manifestations carrying either heterozygous or homozygous ACD variants consisting in the recurrent and previously described in-frame deletion of K170 (K170∆) and three novel missense mutations G179D, L184R, and E215V. Structural and functional analyses demonstrated that the four variants affect the TEL-patch domain of TPP1 and impair telomerase activity. In addition, we identified in the ACD gene several motifs associated with small deletion hotspots that could explain the recurrence of the K170∆ mutation. Finally, we detected in a subset of blood cells from one patient, a somatic TERT promoter-activating mutation that likely provides a selective advantage over non-modified cells, a phenomenon known as indirect somatic genetic rescue. Together, our results broaden the genetic and clinical spectrum of TPP1 deficiency and specify new residues in the TEL-patch domain that are crucial for length maintenance and stability of human telomeres in vivo.


Asunto(s)
Complejo Shelterina , Telomerasa , Proteínas de Unión a Telómeros , Humanos , Biología , Mutación , Complejo Shelterina/genética , Telomerasa/genética , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38977084

RESUMEN

BACKGROUND: DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has an essential role in the non-homologous end-joining pathway that repairs DNA double-strand breaks in V(D)J recombination involved in the expression of T- and B-cell receptors. Whereas homozygous mutations in Prkdc define the Scid mouse, a model that has been widely used in biology, human mutations in PRKDC are extremely rare and the disease spectrum has not been described so far. OBJECTIVES: To provide an update on the genetics, clinical spectrum, immunological profile, and therapy of DNA-PKcs deficiency in human. METHODS: The clinical, biological, and treatment data from the 6 cases published to date and from 1 new patient were obtained and analyzed. Rubella PCR was performed on available granuloma material. RESULTS: We report on 7 patients; 6 patients displayed the autosomal recessive p.L3062R mutation in PRKDC-encoding DNA-PKcs. Atypical severe combined immunodeficiency with inflammatory lesions, granulomas, and autoimmunity was the predominant clinical manifestation (n = 5 of 7). Rubella viral strain was detected in the granuloma of 1 patient over the 2 tested. T-cell counts, including naive CD4+CD45RA+ T cells and T-cell function were low at diagnosis for 6 patients. For most patients with available values, naive CD4+CD45RA+ T cells decreased over time (n = 5 of 6). Hematopoietic stem cell transplantation was performed in 5 patients, of whom 4 are still alive without transplant-related morbidity. Sustained T- and B-cell reconstitution was observed, respectively, for 4 and 3 patients, after a median follow-up of 8 years (range 3-16 years). CONCLUSIONS: DNA-PKcs deficiency mainly manifests as an inflammatory disease with granuloma and autoimmune features, along with severe infections.

3.
Blood ; 139(16): 2427-2440, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35007328

RESUMEN

Inherited bone marrow failure syndromes (IBMFSs) are a group of disorders typified by impaired production of 1 or several blood cell types. The telomere biology disorders dyskeratosis congenita (DC) and its severe variant, Høyeraal-Hreidarsson (HH) syndrome, are rare IBMFSs characterized by bone marrow failure, developmental defects, and various premature aging complications associated with critically short telomeres. We identified biallelic variants in the gene encoding the 5'-to-3' DNA exonuclease Apollo/SNM1B in 3 unrelated patients presenting with a DC/HH phenotype consisting of early-onset hypocellular bone marrow failure, B and NK lymphopenia, developmental anomalies, microcephaly, and/or intrauterine growth retardation. All 3 patients carry a homozygous or compound heterozygous (in combination with a null allele) missense variant affecting the same residue L142 (L142F or L142S) located in the catalytic domain of Apollo. Apollo-deficient cells from patients exhibited spontaneous chromosome instability and impaired DNA repair that was complemented by CRISPR/Cas9-mediated gene correction. Furthermore, patients' cells showed signs of telomere fragility that were not associated with global reduction of telomere length. Unlike patients' cells, human Apollo KO HT1080 cell lines showed strong telomere dysfunction accompanied by excessive telomere shortening, suggesting that the L142S and L142F Apollo variants are hypomorphic. Collectively, these findings define human Apollo as a genome caretaker and identify biallelic Apollo variants as a genetic cause of a hitherto unrecognized severe IBMFS that combines clinical hallmarks of DC/HH with normal telomere length.


Asunto(s)
Disqueratosis Congénita , Discapacidad Intelectual , Microcefalia , Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Retardo del Crecimiento Fetal , Humanos , Discapacidad Intelectual/genética , Microcefalia/genética , Microcefalia/metabolismo , Mutación , Telómero/genética , Telómero/metabolismo
4.
J Allergy Clin Immunol ; 152(2): 500-516, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37004747

RESUMEN

BACKGROUND: Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVES: This study explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS: Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T-cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type versus mutant LIG4 were performed in LIG4 knockout Jurkat T cells, and DNA damage tolerance was subsequently assessed. RESULTS: A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia, and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naive CD4+ T cells and low TCR-Vα7.2+ T cells, while T-/B-cell receptor repertoires showed only mild alterations. Cohort screening identified 2 other nonrelated patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T-cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSIONS: This study provides evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency.


Asunto(s)
ADN Ligasas , Síndromes de Inmunodeficiencia , Humanos , ADN Ligasas/genética , Autoinmunidad/genética , Haploinsuficiencia , ADN Ligasa (ATP)/genética , Síndromes de Inmunodeficiencia/genética , Mutación , ADN
5.
J Clin Immunol ; 43(1): 181-191, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36155879

RESUMEN

PURPOSE: Hypogammaglobulinemia in a context of lymphoma is usually considered as secondary and prior lymphoma remains an exclusion criterion for a common variable immunodeficiency (CVID) diagnosis. We hypothesized that lymphoma could be the revealing symptom of an underlying primary immunodeficiency (PID), challenging the distinction between primary and secondary hypogammaglobulinemia. METHODS: Within a French cohort of adult patients with hypogammaglobulinemia, patients who developed a lymphoma either during follow-up or before the diagnosis of hypogammaglobulinemia were identified. These two chronology groups were then compared. For patients without previous genetic diagnosis, a targeted next-generation sequencing of 300 PID-associated genes was performed. RESULTS: A total of forty-seven patients had developed 54 distinct lymphomas: non-Hodgkin B cell lymphoma (67%), Hodgkin lymphoma (26%), and T cell lymphoma (7%). In 25 patients, lymphoma developed prior to the diagnosis of hypogammaglobulinemia. In this group of patients, Hodgkin lymphoma was overrepresented compared to the group of patients in whom lymphoma occurred during follow-up (48% versus 9%), whereas MALT lymphoma was absent (0 versus 32%). Despite the histopathological differences, both groups presented with similar characteristics in terms of age at hypogammaglobulinemia diagnosis, consanguinity rate, or severe T cell defect. Overall, genetic analyses identified a molecular diagnosis in 10/47 patients (21%), distributed in both groups and without peculiar gene recurrence. Most of these patients presented with a late onset combined immunodeficiency (LOCID) phenotype. CONCLUSION: Prior or concomitant lymphoma should not be used as an exclusion criteria for CVID diagnosis, and these patients should be investigated accordingly.


Asunto(s)
Agammaglobulinemia , Inmunodeficiencia Variable Común , Enfermedad de Hodgkin , Humanos , Inmunodeficiencia Variable Común/diagnóstico , Inmunodeficiencia Variable Común/genética , Inmunodeficiencia Variable Común/complicaciones , Agammaglobulinemia/diagnóstico , Agammaglobulinemia/complicaciones , Enfermedad de Hodgkin/diagnóstico , Linfocitos T , Fenotipo
6.
Hum Mol Genet ; 29(6): 907-922, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31985013

RESUMEN

Telomeres are nucleoprotein structures at the end of chromosomes. The telomerase complex, constituted of the catalytic subunit TERT, the RNA matrix hTR and several cofactors, including the H/ACA box ribonucleoproteins Dyskerin, NOP10, GAR1, NAF1 and NHP2, regulates telomere length. In humans, inherited defects in telomere length maintenance are responsible for a wide spectrum of clinical premature aging manifestations including pulmonary fibrosis (PF), dyskeratosis congenita (DC), bone marrow failure and predisposition to cancer. NHP2 mutations have been so far reported only in two patients with DC. Here, we report the first case of Høyeraal-Hreidarsson syndrome, the severe form of DC, caused by biallelic missense mutations in NHP2. Additionally, we identified three unrelated patients with PF carrying NHP2 heterozygous mutations. Strikingly, one of these patients acquired a somatic mutation in the promoter of TERT that likely conferred a selective advantage in a subset of blood cells. Finally, we demonstrate that a functional deficit of human NHP2 affects ribosomal RNA biogenesis. Together, our results broaden the functional consequences and clinical spectrum of NHP2 deficiency.


Asunto(s)
Disqueratosis Congénita/patología , Retardo del Crecimiento Fetal/patología , Discapacidad Intelectual/patología , Microcefalia/patología , Mutación , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fibrosis Pulmonar/patología , ARN Ribosómico/biosíntesis , Ribonucleoproteínas Nucleares Pequeñas/deficiencia , Ribonucleoproteínas Nucleares Pequeñas/genética , Anciano , Secuencia de Aminoácidos , Disqueratosis Congénita/etiología , Femenino , Retardo del Crecimiento Fetal/etiología , Humanos , Recién Nacido , Discapacidad Intelectual/etiología , Masculino , Microcefalia/etiología , Persona de Mediana Edad , Proteínas Nucleares/química , Linaje , Regiones Promotoras Genéticas , Fibrosis Pulmonar/etiología , Ribonucleoproteínas Nucleares Pequeñas/química , Homología de Secuencia , Telomerasa/genética , Transcripción Genética
7.
Pediatr Allergy Immunol ; 33(6): e13820, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35754136

RESUMEN

Several primary immunodeficiencies are caused by defects in the general DNA repair machinery as exemplified by the T-B- radiosensitive SCID condition owing to impaired resolution of programmed DNA double-strand breaks introduced by RAG1/2 during V(D)J recombination. The genome instability generally associated with these conditions results in an increased propensity to develop malignancies requiring genotoxic-based anti-cancer treatments. Moreover, the extent of immune deficiency often calls for hematopoietic stem cell transplantation as a definitive treatment, also requiring genotoxic-based conditioning regimen prior to transplantation. In both cases, the underlying general DNA repair defect may result in catastrophic iatrogenic consequences. It is, therefore, of paramount importance to assess the functionality of the DNA repair apparatus prior to any genotoxic treatment when the exact molecular cause of the disease is unknown. For this purpose, two simple assays can be used on patients derived peripheral blood lymphocytes: (1) the PROMIDISα biomarker, based on the next-generation sequencing analysis of the TCRα repertoire, will highlight specific signatures of DNA repair deficiencies; (2) direct analysis of the sensitivity of peripheral lymphocytes to ionizing radiation will formally identify patients at risk to develop toxicity toward genotoxic-based treatments.


Asunto(s)
Daño del ADN , Síndromes de Inmunodeficiencia , Reparación del ADN/genética , Humanos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/terapia , Recombinación V(D)J
8.
J Biol Chem ; 295(8): 2398-2406, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31915249

RESUMEN

Repair of DNA double-strand breaks by the nonhomologous end joining pathway is central for proper development of the adaptive immune system. This repair pathway involves eight factors, including XRCC4-like factor (XLF)/Cernunnos and the paralog of XRCC4 and XLF, PAXX nonhomologous end joining factor (PAXX). Xlf-/- and Paxx-/- mice are viable and exhibit only a mild immunophenotype. However, mice lacking both PAXX and XLF are embryonic lethal because postmitotic neurons undergo massive apoptosis in embryos. To decipher the roles of PAXX and XLF in both variable, diversity, and joining recombination and immunoglobulin class switch recombination, here, using Cre/lox-specific deletion to prevent double-KO embryonic lethality, we developed two mouse models of a conditional Xlf KO in a Paxx-/- background. Cre expressed under control of the iVav or CD21 promoter enabled Xlf deletion in early hematopoietic progenitors and splenic mature B cells, respectively. We demonstrate the XLF and PAXX interplay during variable, diversity, and joining recombination in vivo but not during class switch recombination, for which PAXX appeared to be fully dispensable. Xlf/Paxx double KO in hematopoietic progenitors resulted in a shorter lifespan associated with onset of thymic lymphomas, revealing a genome caretaking function of XLF/PAXX.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Células Madre Hematopoyéticas/metabolismo , Linfocitos/metabolismo , Animales , Médula Ósea/metabolismo , Proteínas de Unión al ADN/genética , Cambio de Clase de Inmunoglobulina , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Supervivencia , Recombinación V(D)J/genética
9.
Blood ; 134(3): 277-290, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31151987

RESUMEN

Shwachman-Diamond syndrome (SDS) is a recessive disorder typified by bone marrow failure and predisposition to hematological malignancies. SDS is predominantly caused by deficiency of the allosteric regulator Shwachman-Bodian-Diamond syndrome that cooperates with elongation factor-like GTPase 1 (EFL1) to catalyze release of the ribosome antiassociation factor eIF6 and activate translation. Here, we report biallelic mutations in EFL1 in 3 unrelated individuals with clinical features of SDS. Cellular defects in these individuals include impaired ribosomal subunit joining and attenuated global protein translation as a consequence of defective eIF6 eviction. In mice, Efl1 deficiency recapitulates key aspects of the SDS phenotype. By identifying biallelic EFL1 mutations in SDS, we define this leukemia predisposition disorder as a ribosomopathy that is caused by corruption of a fundamental, conserved mechanism, which licenses entry of the large ribosomal subunit into translation.


Asunto(s)
Mutación , Factores de Elongación de Péptidos/genética , Factores de Iniciación de Péptidos/biosíntesis , Ribonucleoproteína Nuclear Pequeña U5/genética , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/metabolismo , Adolescente , Animales , Células Cultivadas , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Masculino , Ratones , Ratones Transgénicos , Modelos Moleculares , Linaje , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , Fenotipo , Conformación Proteica , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Síndrome de Shwachman-Diamond/diagnóstico , Relación Estructura-Actividad , Secuenciación Completa del Genoma
10.
PLoS Genet ; 14(7): e1007541, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30059501

RESUMEN

DNA replication stress (DRS) leads to the accumulation of stalled DNA replication forks leaving a fraction of genomic loci incompletely replicated, a source of chromosomal rearrangements during their partition in mitosis. MUS81 is known to limit the occurrence of chromosomal instability by processing these unresolved loci during mitosis. Here, we unveil that the endonucleases ARTEMIS and XPF-ERCC1 can also induce stalled DNA replication forks cleavage through non-epistatic pathways all along S and G2 phases of the cell cycle. We also showed that both nucleases are recruited to chromatin to promote replication fork restart. Finally, we found that rapid chromosomal breakage controlled by ARTEMIS and XPF is important to prevent mitotic segregation defects. Collectively, these results reveal that Rapid Replication Fork Breakage (RRFB) mediated by ARTEMIS and XPF in response to DRS contributes to DNA replication efficiency and limit chromosomal instability.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Fase G2/genética , Proteínas Nucleares/metabolismo , Fase S/genética , Línea Celular Tumoral , Segregación Cromosómica/fisiología , Roturas del ADN de Doble Cadena , Daño del ADN/fisiología , Reparación del ADN/fisiología , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Fibroblastos , Inestabilidad Genómica/fisiología , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Proteínas Nucleares/genética , ARN Interferente Pequeño/metabolismo
11.
J Allergy Clin Immunol ; 143(1): 325-334.e2, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29906526

RESUMEN

BACKGROUND: V(D)J recombination ensures the diversity of the adaptive immune system. Although its complete defect causes severe combined immunodeficiency (ie, T-B- severe combined immunodeficiency), its suboptimal activity is associated with a broad spectrum of immune manifestations, such as late-onset combined immunodeficiency and autoimmunity. The earliest molecular diagnosis of these patients is required to adopt the best therapy strategy, particularly when it involves a myeloablative conditioning regimen for hematopoietic stem cell transplantation. OBJECTIVE: We aimed at developing biomarkers based on analysis of the T-cell receptor (TCR) α repertoire to assist in the diagnosis of patients with primary immunodeficiencies with V(D)J recombination and DNA repair deficiencies. METHODS: We used flow cytometric (fluorescence-activated cell sorting) analysis to quantify TCR-Vα7.2-expressing T lymphocytes in peripheral blood and developed PROMIDISα, a multiplex RT-PCR/next-generation sequencing assay, to evaluate a subset of the TCRα repertoire in T lymphocytes. RESULTS: The combined fluorescence-activated cell sorting and PROMIDISα analyses revealed specific signatures in patients with V(D)J recombination-defective primary immunodeficiencies or ataxia telangiectasia/Nijmegen breakage syndromes. CONCLUSION: Analysis of the TCRα repertoire is particularly appropriate in a prospective way to identify patients with partial immune defects caused by suboptimal V(D)J recombination activity, a DNA repair defect, or both. It also constitutes a valuable tool for the retrospective in vivo functional validation of variants identified through exome or panel sequencing. Its broader implementation might be of interest to assist early diagnosis of patients presenting with hypomorphic DNA repair defects inclined to experience acute toxicity during prehematopoietic stem cell transplantation conditioning.


Asunto(s)
Síndromes de Inmunodeficiencia , Receptores de Antígenos de Linfocitos T alfa-beta , Recombinación V(D)J/inmunología , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/patología , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Estudios Retrospectivos
12.
Hum Mol Genet ; 26(10): 1900-1914, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28369633

RESUMEN

NHEJ1-patients develop severe progressive lymphocytopenia and premature aging of hematopoietic stem cells (HSCs) at a young age. Here we show a patient with a homozygous-NHEJ1 mutation identified by whole exome-sequencing that developed severe pancytopenia and bone marrow aplasia correlating with the presence of short telomeres. The mutation resulted in a truncated protein. In an attempt to identify the mechanism behind the short telomere phenotype found in the NHEJ1-patient we downregulated NHEJ1 expression in 293T and CD34+cells. This downregulation resulted in reduced telomerase activity and decreased expression of several telomerase/shelterin genes. Interestingly, cell lines derived from two other NHEJ1-deficient patients with different mutations also showed increased p21 expression, inhibition in expression of several telomerase complex genes and shortened telomeres. Decrease in expression of telomerase/shelterin genes did not occur when we inhibited expression of other NHEJ genes mutated in SCID patients: DNA-PK, Artemis or LigaseIV. Because premature aging of HSCs is observed only in NHEJ1 patients, we propose that is the result of senescence induced by decreased expression of telomerase/shelterin genes that lead to an inhibition of telomerase activity. Previous reports failed to find this connection because of the use of patient´s cells immortalized by TERT expression or recombined telomeres by ALT pathway. In summary, defective regulation of telomere biology together with defective V(D)J recombination can negatively impact on the evolution of the disease in these patients. Identification of telomere shortening is important since it may open new therapeutic interventions for these patients by treatments aimed to recover the expression of telomerase genes.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Telomerasa/genética , Línea Celular , Niño , Enzimas Reparadoras del ADN/sangre , Proteínas de Unión al ADN/sangre , Regulación hacia Abajo , Expresión Génica , Humanos , Masculino , Mutación/genética , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero , Acortamiento del Telómero/genética
14.
PLoS Biol ; 12(3): e1001820, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24667537

RESUMEN

Cognitive and behavioral disorders are thought to be a result of neuronal dysfunction, but the underlying molecular defects remain largely unknown. An important signaling pathway involved in the regulation of neuronal function is the cyclic AMP/Protein kinase A pathway. We here show an essential role for coronin 1, which is encoded in a genomic region associated with neurobehavioral dysfunction, in the modulation of cyclic AMP/PKA signaling. We found that coronin 1 is specifically expressed in excitatory but not inhibitory neurons and that coronin 1 deficiency results in loss of excitatory synapses and severe neurobehavioral disabilities, including reduced anxiety, social deficits, increased aggression, and learning defects. Electrophysiological analysis of excitatory synaptic transmission in amygdala revealed that coronin 1 was essential for cyclic-AMP-protein kinase A-dependent presynaptic plasticity. We further show that upon cell surface stimulation, coronin 1 interacted with the G protein subtype Gαs to stimulate the cAMP/PKA pathway. The absence of coronin 1 or expression of coronin 1 mutants unable to interact with Gαs resulted in a marked reduction in cAMP signaling. Strikingly, synaptic plasticity and behavioral defects of coronin 1-deficient mice were restored by in vivo infusion of a membrane-permeable cAMP analogue. Together these results identify coronin 1 as being important for cognition and behavior through its activity in promoting cAMP/PKA-dependent synaptic plasticity and may open novel avenues for the dissection of signal transduction pathways involved in neurobehavioral processes.


Asunto(s)
Conducta Animal , Cognición/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas de Microfilamentos/fisiología , 4-Butirolactona/análogos & derivados , 4-Butirolactona/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Memoria , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Transducción de Señal , Conducta Social
15.
Nucleic Acids Res ; 43(3): 1834-47, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25628358

RESUMEN

Hoyeraal-Hreidarsson syndrome (HHS) is a severe form of Dyskeratosis congenita characterized by developmental defects, bone marrow failure and immunodeficiency and has been associated with telomere dysfunction. Recently, mutations in Regulator of Telomere ELongation helicase 1 (RTEL1), a helicase first identified in Mus musculus as being responsible for the maintenance of long telomeres, have been identified in several HHS patients. Here we show that RTEL1 is required for the export and the correct cytoplasmic trafficking of the small nuclear (sn) RNA pre-U2, a component of the major spliceosome complex. RTEL1-HHS cells show abnormal subcellular partitioning of pre-U2, defects in the recycling of ribonucleotide proteins (RNP) in the cytoplasm and splicing defects. While most of these phenotypes can be suppressed by re-expressing the wild-type protein in RTEL1-HHS cells, expression of RTEL1 mutated variants in immortalized cells provokes cytoplasmic mislocalizations of pre-U2 and other RNP components, as well as splicing defects, thus phenocopying RTEL1-HHS cellular defects. Strikingly, expression of a cytoplasmic form of RTEL1 is sufficient to correct RNP mislocalizations both in RTEL1-HHS cells and in cells expressing nuclear mutated forms of RTEL1. This work unravels completely unanticipated roles for RTEL1 in RNP trafficking and strongly suggests that defects in RNP biogenesis pathways contribute to the pathology of HHS.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , ADN Helicasas/fisiología , Precursores del ARN/metabolismo , ARN Nuclear Pequeño/metabolismo , Secuencia de Bases , Transporte Biológico , Northern Blotting , Cromatografía Liquida , ADN Helicasas/genética , Cartilla de ADN , Células HEK293 , Células HeLa , Humanos , Reacción en Cadena de la Polimerasa , ARN Interferente Pequeño , Espectrometría de Masas en Tándem
16.
J Allergy Clin Immunol ; 147(2): 734-737, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32531373
17.
Hum Mutat ; 37(5): 469-72, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26847928

RESUMEN

The DNA helicase RTEL1 participates in telomere maintenance and genome stability. Biallelic mutations in the RTEL1 gene account for the severe telomere biology disorder characteristic of the Hoyeraal-Hreidarsson syndrome (HH). Here, we report a HH patient (P4) carrying two novel compound heterozygous mutations in RTEL1: a premature stop codon (c.949A>T, p.Lys317*) and an intronic deletion leading to an exon skipping and an in-frame deletion of 25 amino-acids (p.Ile398_Lys422). P4's cells exhibit short and dysfunctional telomeres similarly to other RTEL1-deficient patients. 3D structure predictions indicated that the p.Ile398_Lys422 deletion affects a part of the helicase ARCH domain, which lines the pore formed with the core HD and the iron-sulfur cluster domains and is highly specific of sequences from the eukaryotic XPD family members.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/genética , Disqueratosis Congénita/genética , Retardo del Crecimiento Fetal/genética , Discapacidad Intelectual/genética , Microcefalia/genética , Mutación , Niño , Codón de Terminación , Femenino , Humanos , Modelos Moleculares , Dominios Proteicos , Eliminación de Secuencia
18.
Blood ; 123(2): 281-9, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24144642

RESUMEN

A subgroup of severe combined immunodeficiencies (SCID) is characterized by lack of T and B cells and is caused by defects in genes required for T- and B-cell receptor gene rearrangement. Several of these genes are also involved in nonhomologous end joining of DNA double-strand break repair, the largest subgroup consisting of patients with T(-)B(-)NK(+)SCID due to DCLRE1C/ARTEMIS defects. We postulated that in patients with ARTEMIS deficiency, early and late complications following hematopoietic cell transplantation might be more prominent compared with patients with T(-)B(-)NK(+)SCID caused by recombination activating gene 1/2 (RAG1/2) deficiencies. We analyzed 69 patients with ARTEMIS and 76 patients with RAG1/2 deficiencies who received transplants from either HLA-identical donors without conditioning or from HLA-nonidentical donors without or with conditioning. There was no difference in survival or in the incidence or severity of acute graft-versus-host disease regardless of exposure to alkylating agents. Secondary malignancies were not observed. Immune reconstitution was comparable in both groups, however, ARTEMIS-deficient patients had a significantly higher occurrence of infections in long-term follow-up. There is a highly significant association between poor growth in ARTEMIS deficiency and use of alkylating agents. Furthermore, abnormalities in dental development and endocrine late effects were associated with alkylation therapy in ARTEMIS deficiency.


Asunto(s)
Proteínas de Unión al ADN/deficiencia , Proteínas de Homeodominio/genética , Proteínas Nucleares/deficiencia , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/inmunología , Linfocitos B/inmunología , Endonucleasas , Femenino , Estudios de Seguimiento , Enfermedad Injerto contra Huésped/etiología , Antígenos HLA/inmunología , Trasplante de Células Madre Hematopoyéticas , Humanos , Depleción Linfocítica , Masculino , Mutación , Factores de Riesgo , Inmunodeficiencia Combinada Grave/complicaciones , Inmunodeficiencia Combinada Grave/mortalidad , Inmunodeficiencia Combinada Grave/terapia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Acondicionamiento Pretrasplante , Resultado del Tratamiento
19.
J Allergy Clin Immunol ; 136(1): 140-150.e7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25917813

RESUMEN

BACKGROUND: The endonuclease ARTEMIS, which is encoded by the DCLRE1C gene, is a component of the nonhomologous end-joining pathway and participates in hairpin opening during the V(D)J recombination process and repair of a subset of DNA double-strand breaks. Patients with ARTEMIS deficiency usually present with severe combined immunodeficiency (SCID) and cellular radiosensitivity, but hypomorphic mutations can cause milder phenotypes (leaky SCID). OBJECTIVE: We sought to correlate the functional effect of human DCLRE1C mutations on phenotypic presentation in patients with ARTEMIS deficiency. METHODS: We studied the recombination and DNA repair activity of 41 human DCLRE1C mutations in Dclre1c(-/-) v-abl kinase-transformed pro-B cells retrovirally engineered with a construct that allows quantification of recombination activity by means of flow cytometry. For assessment of DNA repair efficacy, resolution of γH2AX accumulation was studied after ionizing radiation. RESULTS: Low or absent activity was detected for mutations causing a typical SCID phenotype. Most of the patients with leaky SCID were compound heterozygous for 1 loss-of-function and 1 hypomorphic allele, with significant residual levels of recombination and DNA repair activity. Deletions disrupting the C-terminus result in truncated but partially functional proteins and are often associated with leaky SCID. Overexpression of hypomorphic mutants might improve the functional defect. CONCLUSIONS: Correlation between the nature and location of DCLRE1C mutations, functional activity, and the clinical phenotype has been observed. Hypomorphic variants that have been reported in the general population can be disease causing if combined in trans with a loss-of-function allele. Therapeutic strategies aimed at inducing overexpression of hypomorphic alleles might be beneficial.


Asunto(s)
Linfocitos B/fisiología , Mutación/genética , Proteínas Nucleares/genética , Inmunodeficiencia Combinada Grave/genética , Adolescente , Adulto , Alelos , Linfocitos B/efectos de la radiación , Línea Celular Transformada , Niño , Preescolar , Análisis Mutacional de ADN , Reparación del ADN/genética , Proteínas de Unión al ADN , Endonucleasas , Heterocigoto , Histonas/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Proteínas Oncogénicas v-abl/genética , Proteínas Oncogénicas v-abl/metabolismo , Fenotipo , Tolerancia a Radiación/genética , Radiación Ionizante , Recombinación V(D)J/genética , Adulto Joven
20.
J Allergy Clin Immunol ; 136(6): 1619-1626.e5, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26220525

RESUMEN

BACKGROUND: Myb-Like, SWIRM, and MPN domains 1 (MYSM1) is a metalloprotease that deubiquitinates the K119-monoubiquitinated form of histone 2A (H2A), a chromatin marker associated with gene transcription silencing. Likewise, it has been reported that murine Mysm1 participates in transcription derepression of genes, among which are transcription factors involved in hematopoietic stem cell homeostasis, hematopoiesis, and lymphocyte differentiation. However, whether MYSM1 has a similar function in human subjects remains unclear. Here we describe a patient presenting with a complete lack of B lymphocytes, T-cell lymphopenia, defective hematopoiesis, and developmental abnormalities. OBJECTIVES: We sought to characterize the underlying genetic cause of this syndrome. METHODS: We performed genome-wide homozygosity mapping, followed by whole-exome sequencing. RESULTS: Genetic analysis revealed that this novel disorder is caused by a homozygous MYSM1 missense mutation affecting the catalytic site within the deubiquitinase JAB1/MPN/Mov34 (JAMM)/MPN domain. Remarkably, during the course of our study, the patient recovered a normal immunohematologic phenotype. Genetic analysis indicated that this improvement originated from a spontaneous genetic reversion of the MYSM1 mutation in a hematopoietic stem cell. CONCLUSIONS: We here define a novel human immunodeficiency and provide evidence that MYSM1 is essential for proper immunohematopoietic development in human subjects. In addition, we describe one of the few examples of spontaneous in vivo genetic cure of a human immunodeficiency.


Asunto(s)
Proteínas de Unión al ADN/genética , Síndromes de Inmunodeficiencia/genética , Factores de Transcripción/genética , Linfocitos B/citología , Diferenciación Celular , Hematopoyesis/genética , Humanos , Lactante , Linfopenia/genética , Masculino , Mutación , Linfocitos T/citología , Transactivadores , Proteasas Ubiquitina-Específicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA