Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 14(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361429

RESUMEN

The effect of different constitutive modelling choices is crucial under a high strain rate as encountered in ballistic applications. Natural fragmentation of explosively driven cylinder rings is chosen as a simplified example to describe the ability of numerical simulations to describe fractures. The main research interests are the importance of (i) material imperfections, (ii) the accuracy of fracture models vs. damage models, (iii) the plasticity algorithm (stress update), (iv) the introduction of a triaxiality cutoff criterion to the damage models, and (v) different constitutive models (plasticity and damage). Due to the complexity of the propagation and coalescense of multiple cracks in classical methods, smoothed-particle hydrodynamics (SPH) is used as a tailor-made method to discretise the model. An elasto-plasticity model, a damage model and an equation of state describe the material behaviour. The required material parameters are determined based on stress-strain curves from quasi-static and dynamic tests. The Johnson-Cook model, with and without a modification of the strain rate term, and the Rusinek-Klepaczko model are used to describe plasticity. These plasticity models are combined either with the Johnson-Cook, the Lemaitre, or the Dolinski-Rittel damage model and the Mie-Grüneisen equation of state. The numerical results show that (i) a random distribution of initial damage increases irregularity of cracks, and gives more realistic fragment shapes, (ii) a coupling of plasticity model and fracture criterion has only a small effect on the fracture behaviour, (iii) using an iterative plasticity solver has a positive effect on the fracture behaviour, although this effect is marginal, (iv) adding a triaxiality cutoff criterion to the damage models improves the predicted fragment masses in the numerical simulations significantly, and (v) good accordance between experiments and numerical simulations are found for the Dolinski-Rittel and Lemaitre damage model with both plasticity models.

2.
Materials (Basel) ; 14(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34443170

RESUMEN

The terminal ballistics effects of Intermetallic Reactive Materials (IRM) fragments have been the object of intense research in recent years. IRM fragments flying at velocities up to 2000 m/s represent a realistic threat in modern warfare scenarios as these materials are substituting conventional solutions in defense applications. The IRM add Impact Induced Energy Release (IIER) to the mechanical interaction with a target. Therefore, the necessity of investigations on IIER to quantify potential threats to existing protection systems. In this study, Mixed Rare Earths (MRE) fragments were used due to the mechanical and pyrophoric affinity with IRM, the commercial availability and cost-effectiveness. High-Velocity Impacts (HVI) of MRE were performed at velocities ranging from 800 to 1600 m/s and recorded using a high-speed camera. 70 MREs cylindrical fragments and 24 steel fragments were shot on armour steel plates with thicknesses ranging from 2 mm to 3 mm. The influence of the impact pitch angle (α) on HVI outcomes was assessed, defining a threshold value at α of 20°. The influence of the failure modes of MRE and steel fragments on the critical impact velocities (CIV) and critical kinetic energy (Ekin crit) was evaluated. An energy-based model was developed and fitted with sufficient accuracy the Normalised EKin crit (E˜kincrit) determined from the experiments. IIER was observed in all the experiments involving MRE. From the analyses, it was observed that the IIER spreads behind the targets with velocities comparable to the residual velocities of plugs and shattered fragment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA