Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35162991

RESUMEN

Malaria parasites require multiple phosphorylation and dephosphorylation steps to drive signaling pathways for proper differentiation and transformation. Several protein phosphatases, including protein phosphatase 1 (PP1), one of the main dephosphorylation enzymes, have been shown to be indispensable for the Plasmodium life cycle. The catalytic subunit of PP1 (PP1c) participates in cellular processes via dynamic interactions with a vast number of binding partners that contribute to its diversity of action. In this study, we used Plasmodium berghei transgenic parasite strains stably expressing PP1c or its inhibitor 2 (I2) tagged with mCherry, combined with the mCherry affinity pulldown of proteins from asexual and sexual stages, followed by mass spectrometry analyses. Mapped proteins were used to identify interactomes and to cluster functionally related proteins. Our findings confirm previously known physical interactions of PP1c and reveal enrichment of common biological processes linked to cellular component assembly in both schizonts and gametocytes to biosynthetic processes/translation in schizonts and to protein transport exclusively in gametocytes. Further, our analysis of PP1c and I2 interactomes revealed that nuclear export mediator factor and peptidyl-prolyl cis-trans isomerase, suggested to be essential in P. falciparum, could be potential targets of the complex PP1c/I2 in both asexual and sexual stages. Our study emphasizes the adaptability of Plasmodium PP1 and provides a fundamental study of the protein interaction landscapes involved in a myriad of events in Plasmodium, suggesting why it is crucial to the parasite and a source for alternative therapeutic strategies.


Asunto(s)
Malaria/parasitología , Plasmodium berghei/fisiología , Proteína Fosfatasa 1/metabolismo , Proteínas/metabolismo , Proteómica/métodos , Animales , Sitios de Unión , Cromatografía Liquida , Estadios del Ciclo de Vida , Masculino , Ratones , Organismos Modificados Genéticamente , Plasmodium berghei/patogenicidad , Dominios Proteicos , Mapas de Interacción de Proteínas , Proteína Fosfatasa 1/genética , Proteínas/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Espectrometría de Masas en Tándem
2.
PLoS Pathog ; 15(7): e1007973, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31348803

RESUMEN

The essential and distinct functions of Protein Phosphatase type 1 (PP1) catalytic subunit in eukaryotes are exclusively achieved through its interaction with a myriad of regulatory partners. In this work, we report the molecular and functional characterization of Gametocyte EXported Protein 15 (GEXP15), a Plasmodium specific protein, as a regulator of PP1. In vitro interaction studies demonstrated that GEXP15 physically interacts with PP1 through the RVxF binding motif in P. berghei. Functional assays showed that GEXP15 was able to increase PP1 activity and the mutation of the RVxF motif completely abolished this regulation. Immunoprecipitation assays of tagged GEXP15 or PP1 in P. berghei followed by immunoblot or mass spectrometry analyses confirmed their interaction and showed that they are present both in schizont and gametocyte stages in shared protein complexes involved in the spliceosome and proteasome pathways and known to play essential role in parasite development. Phenotypic analysis of viable GEXP15 deficient P. berghei blood parasites showed that they were unable to develop lethal infection in BALB/c mice or to establish experimental cerebral malaria in C57BL/6 mice. Further, although deficient parasites produced gametocytes they did not produce any oocysts/sporozoites indicating a high fitness cost in the mosquito. Global proteomic and phosphoproteomic analyses of GEXP15 deficient schizonts revealed a profound defect with a significant decrease in the abundance and an impact on phosphorylation status of proteins involved in regulation of gene expression or invasion. Moreover, depletion of GEXP15 seemed to impact mainly the abundance of some specific proteins of female gametocytes. Our study provides the first insight into the contribution of a PP1 regulator to Plasmodium virulence and suggests that GEXP15 affects both the asexual and sexual life cycle.


Asunto(s)
Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/fisiología , Proteína Fosfatasa 1/fisiología , Proteínas Protozoarias/fisiología , Animales , Anopheles/parasitología , Eritrocitos/parasitología , Femenino , Genes Protozoarios , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/fisiología , Humanos , Malaria/parasitología , Malaria/transmisión , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mosquitos Vectores/parasitología , Plasmodium berghei/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/genética , Proteómica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
BMC Genomics ; 17: 246, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26988354

RESUMEN

BACKGROUND: Protein Phosphatase 1 (PP1) is an enzyme essential to cell viability in the malaria parasite Plasmodium falciparum (Pf). The activity of PP1 is regulated by the binding of regulatory subunits, of which there are up to 200 in humans, but only 3 have been so far reported for the parasite. To better understand the P. falciparum PP1 (PfPP1) regulatory network, we here report the use of three strategies to characterize the PfPP1 interactome: co-affinity purified proteins identified by mass spectrometry, yeast two-hybrid (Y2H) screening and in silico analysis of the P. falciparum predicted proteome. RESULTS: Co-affinity purification followed by MS analysis identified 6 PfPP1 interacting proteins (Pips) of which 3 contained the RVxF consensus binding, 2 with a Fxx[RK]x[RK] motif, also shown to be a PP1 binding motif and one with both binding motifs. The Y2H screens identified 134 proteins of which 30 present the RVxF binding motif and 20 have the Fxx[RK]x[RK] binding motif. The in silico screen of the Pf predicted proteome using a consensus RVxF motif as template revealed the presence of 55 potential Pips. As further demonstration, 35 candidate proteins were validated as PfPP1 interacting proteins in an ELISA-based assay. CONCLUSIONS: To the best of our knowledge, this is the first study on PfPP1 interactome. The data reports several conserved PP1 interacting proteins as well as a high number of specific interactors to PfPP1. Their analysis indicates a high diversity of biological functions for PP1 in Plasmodium. Based on the present data and on an earlier study of the Pf interactome, a potential implication of Pips in protein folding/proteolysis, transcription and pathogenicity networks is proposed. The present work provides a starting point for further studies on the structural basis of these interactions and their functions in P. falciparum.


Asunto(s)
Plasmodium falciparum/enzimología , Proteína Fosfatasa 1/metabolismo , Proteoma , Proteínas Protozoarias/metabolismo , Secuencias de Aminoácidos , Unión Proteica , Mapeo de Interacción de Proteínas , Técnicas del Sistema de Dos Híbridos
4.
Open Biol ; 12(8): 220015, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35920043

RESUMEN

Protein phosphatase 1 (PP1) is a key enzyme for Plasmodium development. However, the detailed mechanisms underlying its regulation remain to be deciphered. Here, we report the functional characterization of the Plasmodium berghei leucine-rich repeat protein 1 (PbLRR1), an orthologue of SDS22, one of the most ancient and conserved PP1 interactors. Our study shows that PbLRR1 is expressed during intra-erythrocytic development of the parasite, and up to the zygote stage in mosquitoes. PbLRR1 can be found in complex with PbPP1 in both asexual and sexual stages and inhibits its phosphatase activity. Genetic analysis demonstrates that PbLRR1 depletion adversely affects the development of oocysts. PbLRR1 interactome analysis associated with phospho-proteomics studies identifies several novel putative PbLRR1/PbPP1 partners. Some of these partners have previously been characterized as essential for the parasite sexual development. Interestingly, and for the first time, Inhibitor 3 (I3), a well-known and direct interactant of Plasmodium PP1, was found to be drastically hypophosphorylated in PbLRR1-depleted parasites. These data, along with the detection of I3 with PP1 in the LRR1 interactome, strongly suggest that the phosphorylation status of PbI3 is under the control of the PP1-LRR1 complex and could contribute (in)directly to oocyst development. This study provides new insights into previously unrecognized PbPP1 fine regulation of Plasmodium oocyst development through its interaction with PbLRR1.


Asunto(s)
Proteínas Repetidas Ricas en Leucina , Plasmodium berghei , Animales , Oocistos/metabolismo , Fosforilación , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo
5.
Haematologica ; 95(3): 398-405, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19815832

RESUMEN

BACKGROUND: Anemia is a characteristic of myelodysplastic syndromes, such as the rare 5q- syndrome, but its mechanism remains unclear. In particular, data are lacking on the terminal phase of differentiation of erythroid cells (enucleation) in myelodysplastic syndromes. DESIGN AND METHODS: We used a previously published culture model to generate mature red blood cells in vitro from human hematopoietic progenitor cells in order to study the pathophysiology of the 5q- syndrome. Our model enables analysis of cell proliferation and differentiation at a single cell level and determination of the enucleation capacity of erythroid precursors. RESULTS: The erythroid commitment of 5q(del) clones was not altered and their terminal differentiation capacity was preserved since they achieved final erythroid maturation (enucleation stage). The drop in red blood cell production was secondary to the decrease in the erythroid progenitor cell pool and to impaired proliferative capacity. RPS14 gene haploinsufficiency was related to defective erythroid proliferation but not to differentiation capacity. CONCLUSIONS: The 5q- syndrome should be considered a quantitative rather than qualitative bone marrow defect. This observation might open the way to new therapeutic concepts.


Asunto(s)
Células de la Médula Ósea/citología , Diferenciación Celular/genética , Deleción Cromosómica , Cromosomas Humanos Par 5/genética , Eritrocitos/citología , Células Precursoras Eritroides/fisiología , Síndromes Mielodisplásicos/genética , Anciano , Anciano de 80 o más Años , Células Cultivadas , Eritropoyesis , Femenino , Humanos , Masculino , Síndromes Mielodisplásicos/patología , Proteínas Ribosómicas/genética
6.
Sci Rep ; 9(1): 8120, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31148576

RESUMEN

Pseudokinases play key roles in many biological processes but they are poorly understood compared to active kinases. Eight putative pseudokinases have been predicted in Plasmodium species. We selected the unique pseudokinase belonging to tyrosine kinase like (TKL) family for detailed structural and functional analysis in P. falciparum and P. berghei. The primary structure of PfpTKL lacks residues critical for kinase activity, supporting its annotation as a pseudokinase. The recombinant pTKL pseudokinase domain was able to bind ATP, but lacked catalytic activity as predicted. The sterile alpha motif (SAM) and RVxF motifs of PfpTKL were found to interact with the P. falciparum proteins serine repeat antigen 5 (SERA5) and protein phosphatase type 1 (PP1) respectively, suggesting that pTKL has a scaffolding role. Furthermore, we found that PP1c activity in a heterologous model was modulated in an RVxF-dependent manner. During the trophozoite stages, PbpTKL was exported to infected erythrocytes where it formed complexes with proteins involved in cytoskeletal organization or host cell maturation and homeostasis. Finally, genetic analysis demonstrated that viable strains obtained by genomic deletion or knocking down PbpTKL did not affect the course of parasite intra-erythrocytic development or gametocyte emergence, indicating functional redundancy during these parasite stages.


Asunto(s)
Antígenos de Protozoos/metabolismo , Eritrocitos/parasitología , Plasmodium/enzimología , Proteína Fosfatasa 1/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Animales , Citoesqueleto/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Eliminación de Gen , Humanos , Hidrólisis , Ratones , Estructura Molecular , Filogenia , Pliegue de Proteína , Proteínas Recombinantes/metabolismo , Transcripción Genética , Transgenes , Técnicas del Sistema de Dos Híbridos , Xenopus laevis
7.
Front Microbiol ; 9: 2617, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30429842

RESUMEN

With its multiple regulatory partners, the conserved Protein Phosphatase type-1 (PP1) plays a central role in many functions of the biology of eukaryotic cells, including Plasmodium falciparum. Here, we characterized a protein named PfRCC-PIP, as a major partner of PfPP1. We established its direct interaction in vitro and its presence in complex with PfPP1 in the parasite. The use of Xenopus oocyte model revealed that RCC-PIP can interact with the endogenous PP1 and act in synergy with suboptimal doses of progesterone to trigger oocyte maturation, suggesting a regulatory effect on PP1. Reverse genetic studies suggested an essential role for RCC-PIP since no viable knock-out parasites could be obtained. Further, we demonstrated the capacity of protein region containing RCC1 motifs to interact with the parasite kinase CDPK7. These data suggest that this protein is both a kinase and a phosphatase anchoring protein that could provide a platform to regulate phosphorylation/dephosphorylation processes.

8.
PLoS One ; 8(4): e60743, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23637765

RESUMEN

BACKGROUND AND OBJECTIVES: Epstein-Barr Virus (EBV) Latent Membrane Protein 1 (LMP1) is linked to a variety of malignancies including Hodgkin's disease, lymphomas, nasopharyngeal and gastric carcinoma. LMP1 exerts its transforming or oncogenic activity mainly through the recruitment of intracellular adapters via LMP1 C-terminal Transformation Effector Sites (TES) 1 and 2. However, LMP1 is also reported to elicit significant cytotoxic effects in some other cell types. This cytotoxic effect is quite intriguing for an oncogenic protein, and it is unclear whether both functional aspects of the protein are related or mutually exclusive. METHODOLOGY AND PRINCIPAL FINDINGS: Using different ectopic expression systems in both Madin-Darby canine kidney (MDCK) epithelial cells and human embryonic kidney HEK-293 cells, we observe that LMP1 ectopic expression massively induces cell death. Furthermore, we show that LMP1-induced cytotoxicity mainly implies LMP1 C-terminal transformation effector sites and TRADD recruitment. However, stable expression of LMP1 in the same cells, is found to be associated with an increase of cell survival and an acquisition of epithelial mesenchymal transition phenotype as evidenced by morphological modifications, increased cell mobility, increased expression of MMP9 and decreased expression of E-cadherin. Our results demonstrate for the first time that the cytotoxic and oncogenic effects of LMP1 are not mutually exclusive but may operate sequentially. We suggest that in a total cell population, cells resistant to LMP1-induced cytotoxicity are those that could take advantage of LMP1 oncogenic activity by integrating LMP1 signaling into the pre-existent signaling network. Our findings thus reconcile the apparent opposite apoptotic and oncogenic effects described for LMP1 and might reflect what actually happens on LMP1-induced cell transformation after EBV infection in patients.


Asunto(s)
Transformación Celular Neoplásica/patología , Proteínas Oncogénicas/metabolismo , Proteínas de la Matriz Viral/metabolismo , Animales , Muerte Celular , Supervivencia Celular , Perros , Células Epiteliales/citología , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Células HEK293 , Herpesvirus Humano 4/fisiología , Humanos , Células de Riñón Canino Madin Darby , Proteínas Oncogénicas/química , Transporte de Proteínas , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismo , Proteínas de la Matriz Viral/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA