Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Annu Rev Biochem ; 90: 659-679, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-34153214

RESUMEN

The polytopic, endoplasmic reticulum (ER) membrane protein 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, the key intermediate in the synthesis of cholesterol and many nonsterol isoprenoids including geranylgeranyl pyrophosphate (GGpp). Transcriptional, translational, and posttranslational feedback mechanisms converge on this reductase to ensure cells maintain a sufficient supply of essential nonsterol isoprenoids but avoid overaccumulation of cholesterol and other sterols. The focus of this review is mechanisms for the posttranslational regulation of HMG CoA reductase, which include sterol-accelerated ubiquitination and ER-associated degradation (ERAD) that is augmented by GGpp. We discuss how GGpp-induced ER-to-Golgi trafficking of the vitamin K2 synthetic enzyme UbiA prenyltransferase domain-containing protein-1 (UBIAD1) modulates HMG CoA reductase ERAD to balance the synthesis of sterol and nonsterol isoprenoids. We also summarize the characterization of genetically manipulated mice, which established that sterol-accelerated, UBIAD1-modulated ERAD plays a major role in regulation of HMG CoA reductase and cholesterol metabolism in vivo.


Asunto(s)
Colesterol/biosíntesis , Degradación Asociada con el Retículo Endoplásmico/fisiología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Animales , Dimetilaliltranstransferasa/metabolismo , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Humanos , Hidroximetilglutaril-CoA Reductasas/química , Hidroximetilglutaril-CoA Reductasas/genética , Ratones , Fosfatos de Poliisoprenilo/metabolismo , Procesamiento Proteico-Postraduccional , Esteroles/metabolismo , Terpenos/metabolismo , Terpenos/farmacología , Ubiquitinación
2.
Proc Natl Acad Sci U S A ; 121(7): e2318822121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319967

RESUMEN

The maintenance of cholesterol homeostasis is crucial for normal function at both the cellular and organismal levels. Two integral membrane proteins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and Scap, are key targets of a complex feedback regulatory system that operates to ensure cholesterol homeostasis. HMGCR catalyzes the rate-limiting step in the transformation of the 2-carbon precursor acetate to 27-carbon cholesterol. Scap mediates proteolytic activation of sterol regulatory element-binding protein-2 (SREBP-2), a membrane-bound transcription factor that controls expression of genes involved in the synthesis and uptake of cholesterol. Sterol accumulation triggers binding of HMGCR to endoplasmic reticulum (ER)-localized Insig proteins, leading to the enzyme's ubiquitination and proteasome-mediated ER-associated degradation (ERAD). Sterols also induce binding of Insigs to Scap, which leads to sequestration of Scap and its bound SREBP-2 in the ER, thereby preventing proteolytic activation of SREBP-2 in the Golgi. The oxygenated cholesterol derivative 25-hydroxycholesterol (25HC) and the methylated cholesterol synthesis intermediate 24,25-dihydrolanosterol (DHL) differentially modulate HMGCR and Scap. While both sterols promote binding of HMGCR to Insigs for ubiquitination and subsequent ERAD, only 25HC inhibits the Scap-mediated proteolytic activation of SREBP-2. We showed previously that 1,1-bisphosphonate esters mimic DHL, accelerating ERAD of HMGCR while sparing SREBP-2 activation. Building on these results, our current studies reveal specific, Insig-independent photoaffinity labeling of HMGCR by photoactivatable derivatives of the 1,1-bisphosphonate ester SRP-3042 and 25HC. These findings disclose a direct sterol binding mechanism as the trigger that initiates the HMGCR ERAD pathway, providing valuable insights into the intricate mechanisms that govern cholesterol homeostasis.


Asunto(s)
Fitosteroles , Esteroles , Esteroles/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Colesterol/metabolismo , Hidroximetilglutaril-CoA Reductasas/metabolismo , Carbono/metabolismo , Difosfonatos
3.
Trends Biochem Sci ; 43(5): 358-368, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29500098

RESUMEN

Sterol regulatory element-binding proteins (SREBPs) are a family of membrane-bound transcription factors that activate genes encoding enzymes required for synthesis of cholesterol and unsaturated fatty acids. SREBPs are controlled by multiple mechanisms at the level of mRNA synthesis, proteolytic activation, and transcriptional activity. In this review, we summarize the recent findings that contribute to the current understanding of the regulation of SREBPs and their physiologic roles in maintenance of lipid homeostasis, insulin signaling, innate immunity, and cancer development.


Asunto(s)
Lípidos , Neoplasias/metabolismo , Transducción de Señal , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Homeostasis , Humanos , Inmunidad Innata , Lípidos/inmunología , Neoplasias/inmunología , Transducción de Señal/inmunología , Proteínas de Unión a los Elementos Reguladores de Esteroles/inmunología
4.
J Nutr ; 152(4): 981-993, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34550377

RESUMEN

BACKGROUND: Vitamin K is a term that comprises a family of structurally related quinones, phylloquinone (PK) and the menaquinones (MKn), that share a common naphthoquinone ring but vary in sidechain length (n) and saturation. Dietary PK is a biosynthetic precursor to tissue menaquinone-4 (MK4), but little is known about the absorption and metabolism of dietary MKn. OBJECTIVE: To characterize the absorption and metabolism of dietary MKn relative to PK. METHODS: In the 4-week diet study, 10-week-old male and female C57BL/6 mice were pair-fed a vitamin K deficient diet (control) or a diet supplemented with 5.0 µmol/kg total PK, MK4, and/or MK9 (separately and in combination). In the 1-week stable isotope study, 12-week-old mice were pair-fed diets containing 2.2 µmol/kg PK (unlabeled control), 2H7PK, 13C11MK4, 2H7MK7, or 2H7MK9. Vitamin K tissue content was quantified by HPLC and/or LC-MS, and concentrations were compared by sex and diet group using 2-factor ANOVA. RESULTS: Regardless of the form(s) of vitamin K provided in the diet, tissue MK4 concentrations did not differ across equimolar supplemented groups in the kidney, adipose, reproductive organ, bone, or pancreas in either males or females in the diet study (all P values > 0.05). Isotopic labeling confirmed the naphthoquinone ring of MK4 in tissues originated from the administered dietary PK or MKn. Despite equimolar supplementation, accumulation of the administered dietary form differed across diet groups in small intestinal segments (all P values < 0.002) and the liver (P < 0.001). Female mice had greater total vitamin K than males in every tissue examined (P < 0.05). CONCLUSIONS: Dietary PK, MK4, MK7, and MK9 all served as precursors to tissue MK4 in mice. This study expands our understanding of vitamin K metabolism and supports a common conversion mechanism of all dietary vitamin K forms to MK4. Further investigation of the metabolism and physiological roles of MK4 that may be independent of classical vitamin K function is warranted.


Asunto(s)
Vitamina K 1 , Vitamina K , Animales , Dieta , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vitamina K/metabolismo , Vitamina K 1/metabolismo , Vitamina K 2/análogos & derivados , Vitamina K 2/metabolismo
5.
Semin Cell Dev Biol ; 81: 121-128, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29107682

RESUMEN

Accelerated ubiquitination and subsequent endoplasmic reticulum (ER)-associated degradation (ERAD) constitute one of several mechanisms for feedback control of HMG CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids. This ERAD is initiated by the accumulation of certain sterols in ER membranes, which trigger binding of reductase to ER membrane proteins called Insigs. Insig-associated ubiquitin ligases facilitate ubiquitination of reductase, marking the enzyme for extraction across the ER membrane through a reaction that is augmented by nonsterol isoprenoids. Once extracted, ubiquitinated reductase becomes dislocated into the cytosol for degradation by 26S proteasomes. In this review, we will highlight several advances in the understanding of reductase ERAD, which includes the discovery for a role of the vitamin K2 synthetic enzyme UBIAD1 in the reaction and demonstration that sterol-accelerated ERAD significantly contributes to feedback regulation of reductase and cholesterol metabolism in livers of whole animals.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Hidroximetilglutaril-CoA Reductasas/metabolismo , Esteroles/metabolismo , Ubiquitinación , Animales , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo
6.
J Lipid Res ; 61(5): 746-757, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32188638

RESUMEN

The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD.


Asunto(s)
Autofagia/genética , Distrofias Hereditarias de la Córnea/genética , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Variación Genética , Proteolisis , Vitamina K 2/análogos & derivados , Línea Celular , Humanos , Espacio Intracelular/metabolismo , Transporte de Proteínas , Vitamina K 2/metabolismo
7.
J Biol Chem ; 293(1): 312-323, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29167270

RESUMEN

UBIAD1 (UbiA prenyltransferase domain-containing protein-1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize vitamin K2 We previously reported that sterols stimulate binding of UBIAD1 to endoplasmic reticulum (ER)-localized 3-hydroxy-3-methylglutaryl (HMG) CoA reductase. UBIAD1 binding inhibits sterol-accelerated, ER-associated degradation (ERAD) of reductase, one of several mechanisms for feedback control of this rate-limiting enzyme in the branched pathway that produces cholesterol and nonsterol isoprenoids such as GGpp. Accumulation of GGpp in ER membranes triggers release of UBIAD1 from reductase, permitting its maximal ERAD and ER-to-Golgi transport of UBIAD1. Mutant UBIAD1 variants associated with Schnyder corneal dystrophy (SCD), a human disorder characterized by corneal accumulation of cholesterol, resist GGpp-induced release from reductase and remain sequestered in the ER to block reductase ERAD. Using lines of genetically manipulated cells, we now examine consequences of UBIAD1 deficiency and SCD-associated UBIAD1 on reductase ERAD and cholesterol synthesis. Our results indicated that reductase becomes destabilized in the absence of UBIAD1, resulting in reduced cholesterol synthesis and intracellular accumulation. In contrast, an SCD-associated UBIAD1 variant inhibited reductase ERAD, thereby stabilizing the enzyme and contributing to enhanced synthesis and intracellular accumulation of cholesterol. Finally, we present evidence that GGpp-regulated, ER-to-Golgi transport enables UBIAD1 to modulate reductase ERAD such that synthesis of nonsterol isoprenoids is maintained in sterol-replete cells. These findings further establish UBIAD1 as a central player in the reductase ERAD pathway and regulation of isoprenoid synthesis. They also indicate that UBIAD1-mediated inhibition of reductase ERAD underlies cholesterol accumulation associated with SCD.


Asunto(s)
Dimetilaliltranstransferasa/metabolismo , Hidroximetilglutaril-CoA Reductasas/metabolismo , Esteroles/biosíntesis , Terpenos/metabolismo , Células Cultivadas , Colesterol/metabolismo , Dimetilaliltranstransferasa/genética , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Degradación Asociada con el Retículo Endoplásmico/fisiología , Fibroblastos/metabolismo , Aparato de Golgi/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ácido Mevalónico/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Esteroles/metabolismo , Vitamina K 2/metabolismo
8.
J Biol Chem ; 292(22): 9382-9393, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28416613

RESUMEN

Cholesterol synthesis is a highly oxygen-consuming process. As such, oxygen deprivation (hypoxia) limits cholesterol synthesis through incompletely understood mechanisms mediated by the oxygen-sensitive transcription factor hypoxia-inducible factor 1α (HIF-1α). We show here that HIF-1α links pathways for oxygen sensing and feedback control of cholesterol synthesis in human fibroblasts by directly activating transcription of the INSIG-2 gene. Insig-2 is one of two endoplasmic reticulum membrane proteins that inhibit cholesterol synthesis by mediating sterol-induced ubiquitination and subsequent endoplasmic reticulum-associated degradation of the rate-limiting enzyme in the pathway, HMG-CoA reductase (HMGCR). Consistent with the results in cultured cells, hepatic levels of Insig-2 mRNA were enhanced in mouse models of hypoxia. Moreover, pharmacologic stabilization of HIF-1α in the liver stimulated HMGCR degradation via a reaction that requires the protein's prior ubiquitination and the presence of the Insig-2 protein. In summary, our results show that HIF-1α activates INSIG-2 transcription, leading to accumulation of Insig-2 protein, which binds to HMGCR and triggers its accelerated ubiquitination and degradation. These results indicate that HIF-mediated induction of Insig-2 and degradation of HMGCR are physiologically relevant events that guard against wasteful oxygen consumption and inappropriate cell growth during hypoxia.


Asunto(s)
Hidroximetilglutaril-CoA Reductasas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Hígado/metabolismo , Proteínas de la Membrana/biosíntesis , Proteolisis , Transcripción Genética , Animales , Hipoxia de la Célula , Línea Celular Transformada , Fibroblastos/metabolismo , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones
9.
J Biol Chem ; 291(26): 13479-94, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27129778

RESUMEN

Accumulation of sterols in endoplasmic reticulum membranes stimulates the ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), which catalyzes a rate-limiting step in synthesis of cholesterol. This ubiquitination marks HMGCR for proteasome-mediated degradation and constitutes one of several mechanisms for feedback control of cholesterol synthesis. Mechanisms for sterol-accelerated ubiquitination and degradation of HMGCR have been elucidated through the study of cultured mammalian cells. However, the extent to which these reactions modulate HMGCR and contribute to control of cholesterol metabolism in whole animals is unknown. Here, we examine transgenic mice expressing in the liver the membrane domain of HMGCR (HMGCR (TM1-8)), a region necessary and sufficient for sterol-accelerated degradation, and knock-in mice in which endogenous HMGCR harbors mutations that prevent sterol-induced ubiquitination. Characterization of transgenic mice revealed that HMGCR (TM1-8) is appropriately regulated in the liver of mice fed a high cholesterol diet or chow diet supplemented with the HMGCR inhibitor lovastatin. Ubiquitination-resistant HMGCR protein accumulates in the liver and other tissues disproportionately to its mRNA, indicating that sterol-accelerated degradation significantly contributes to feedback regulation of HMGCR in vivo Results of these studies demonstrate that HMGCR is subjected to sterol-accelerated degradation in the liver through mechanisms similar to those established in cultured cells. Moreover, these studies designate sterol-accelerated degradation of HMGCR as a potential therapeutic target for prevention of atherosclerosis and associated cardiovascular disease.


Asunto(s)
Colesterol/metabolismo , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hígado/metabolismo , Proteolisis , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Células Cultivadas , Colesterol/genética , Hidroximetilglutaril-CoA Reductasas/genética , Lovastatina/farmacología , Ratones , Ratones Noqueados , Estructura Terciaria de Proteína
10.
J Lipid Res ; 57(7): 1286-99, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27121042

RESUMEN

UbiA prenyltransferase domain-containing protein-1 (UBIAD1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4. Previously, we found that sterols trigger binding of UBIAD1 to endoplasmic reticulum (ER)-localized HMG-CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids, including GGpp. This binding inhibits sterol-accelerated degradation of reductase, which contributes to feedback regulation of the enzyme. The addition to cells of geranylgeraniol (GGOH), which can become converted to GGpp, triggers release of UBIAD1 from reductase, allowing for its maximal degradation and permitting ER-to-Golgi transport of UBIAD1. Here, we further characterize geranylgeranyl-regulated transport of UBIAD1. Results of this characterization support a model in which UBIAD1 continuously cycles between the ER and medial-trans Golgi of isoprenoid-replete cells. Upon sensing a decline of GGpp in ER membranes, UBIAD1 becomes trapped in the organelle where it inhibits reductase degradation. Mutant forms of UBIAD1 associated with Schnyder corneal dystrophy (SCD), a human eye disease characterized by corneal accumulation of cholesterol, are sequestered in the ER and block reductase degradation. Collectively, these findings disclose a novel sensing mechanism that allows for stringent metabolic control of intracellular trafficking of UBIAD1, which directly modulates reductase degradation and becomes disrupted in SCD.


Asunto(s)
Distrofias Hereditarias de la Córnea/genética , Dimetilaliltranstransferasa/metabolismo , Hidroximetilglutaril-CoA Reductasas/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Distrofias Hereditarias de la Córnea/metabolismo , Distrofias Hereditarias de la Córnea/patología , Dimetilaliltranstransferasa/genética , Retículo Endoplásmico/enzimología , Aparato de Golgi/enzimología , Humanos , Metabolismo de los Lípidos/genética , Transporte de Proteínas/genética , Proteolisis , Terpenos/metabolismo , Vitamina K/biosíntesis , Vitamina K/metabolismo , Vitamina K 2/análogos & derivados , Vitamina K 2/metabolismo
12.
J Biol Chem ; 289(27): 19053-66, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24860107

RESUMEN

Accelerated endoplasmic reticulum (ER)-associated degradation (ERAD) of the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase results from its sterol-induced binding to ER membrane proteins called Insig-1 and Insig-2. This binding allows for subsequent ubiquitination of reductase by Insig-associated ubiquitin ligases. Once ubiquitinated, reductase becomes dislocated from ER membranes into the cytosol for degradation by 26 S proteasomes through poorly defined reactions mediated by the AAA-ATPase valosin-containing protein (VCP)/p97 and augmented by the nonsterol isoprenoid geranylgeraniol. Here, we report that the oxysterol 25-hydroxycholesterol and geranylgeraniol combine to trigger extraction of reductase across ER membranes prior to its cytosolic release. This conclusion was drawn from studies utilizing a novel assay that measures membrane extraction of reductase by determining susceptibility of a lumenal epitope in the enzyme to in vitro protease digestion. Susceptibility of the lumenal epitope to protease digestion and thus membrane extraction of reductase were tightly regulated by 25-hydroxycholesterol and geranylgeraniol. The reaction was inhibited by RNA interference-mediated knockdown of either Insigs or VCP/p97. In contrast, reductase continued to become membrane-extracted, but not cytosolically dislocated, in cells deficient for AAA-ATPases of the proteasome 19 S regulatory particle. These findings establish sequential roles for VCP/p97 and the 19 S regulatory particle in the sterol-accelerated ERAD of reductase that may be applicable to the ERAD of other substrates.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Hidroximetilglutaril-CoA Reductasas/metabolismo , Metaloendopeptidasas/metabolismo , Proteolisis/efectos de los fármacos , Esteroles/farmacología , Animales , Secuencia de Bases , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Técnicas de Silenciamiento del Gen , Glicosilación/efectos de los fármacos , Humanos , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Interferente Pequeño/genética , Tripsina/metabolismo
13.
Proc Natl Acad Sci U S A ; 108(51): 20503-8, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22143767

RESUMEN

Accumulation of sterols in membranes of the endoplasmic reticulum (ER) leads to the accelerated ubiquitination and proteasomal degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids. This degradation results from sterol-induced binding of reductase to the Insig-1 or Insig-2 proteins of ER membranes. We previously reported that in immortalized human fibroblasts (SV-589 cells) Insig-1, but not Insig-2, recruits gp78, a membrane-bound RING-finger ubiquitin ligase. We now report that both Insig-1 and Insig-2 bind another membrane-bound RING-finger ubiquitin ligase called Trc8. Knockdown of either gp78 or Trc8 in SV-589 cells through RNA interference (RNAi) inhibited sterol-induced ubiquitination of reductase and inhibited sterol-induced degradation by 50-60%. The combined knockdown of gp78 and Trc8 produced a more complete inhibition of degradation (> 90%). Knockdown of gp78 led to a three to fourfold increase in levels of Trc8 and Insig-1 proteins, which opposed the inhibitory action of gp78. In contrast, knockdown of Trc8 had no effect on gp78 or Insig-1. The current results suggest that sterol-induced ubiquitination and proteasomal degradation of reductase is dictated by the complex interplay of at least four proteins: Insig-1, Insig-2, gp78, and Trc8. Variations in the concentrations of any one of these proteins may account for differences in cell- and/or tissue-specific regulation of reductase degradation.


Asunto(s)
Hidroximetilglutaril-CoA Reductasas/química , Receptores del Factor Autocrino de Motilidad/química , Receptores de Superficie Celular/química , Esteroles/química , Ubiquitina-Proteína Ligasas/química , Animales , Células CHO , Cricetinae , Cricetulus , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de la Membrana/química , Interferencia de ARN
14.
J Lipid Res ; 54(4): 1011-22, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23403031

RESUMEN

In mammalian cells, levels of the integral membrane proteins 3-hydroxy-3-methylglutaryl-CoA reductase and Insig-1 are controlled by lipid-regulated endoplasmic reticulum-associated degradation (ERAD). The ERAD of reductase slows a rate-limiting step in cholesterol synthesis and results from sterol-induced binding of its membrane domain to Insig-1 and the highly related Insig-2 protein. Insig binding bridges reductase to ubiquitin ligases that facilitate its ubiquitination, thereby marking the protein for cytosolic dislocation and proteasomal degradation. In contrast to reductase, Insig-1 is subjected to ERAD in lipid-deprived cells. Sterols block this ERAD by inhibiting Insig-1 ubiquitination, whereas unsaturated fatty acids block the reaction by preventing the protein's cytosolic dislocation. In previous studies, we found that the membrane domain of mammalian reductase was subjected to ERAD in Drosophila S2 cells. This ERAD was appropriately accelerated by sterols and required the action of Insigs, which bridged reductase to a Drosophila ubiquitin ligase. We now report reconstitution of mammalian Insig-1 ERAD in S2 cells. The ERAD of Insig-1 in S2 cells mimics the reaction that occurs in mammalian cells with regard to its inhibition by either sterols or unsaturated fatty acids. Genetic and pharmacologic manipulations coupled with subcellular fractionation indicate that Insig-1 and reductase are degraded through distinct mechanisms that are mediated by different ubiquitin ligase complexes. Together, these results establish Drosophila S2 cells as a model system to elucidate mechanisms through which lipid constituents of cell membranes (i.e., sterols and fatty acids) modulate the ERAD of Insig-1 and reductase.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Acilcoenzima A/metabolismo , Animales , Línea Celular , Drosophila , Humanos , Inmunoprecipitación , Metabolismo de los Lípidos/fisiología
15.
Crit Rev Biochem Mol Biol ; 45(3): 185-98, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20482385

RESUMEN

Multiple mechanisms for feedback control of cholesterol synthesis converge on the rate-limiting enzyme in the pathway, 3-hydroxy-3-methylglutaryl coenzyme A reductase. This complex feedback regulatory system is mediated by sterol and nonsterol metabolites of mevalonate, the immediate product of reductase activity. One mechanism for feedback control of reductase involves rapid degradation of the enzyme from membranes of the endoplasmic reticulum (ER). This degradation results from the accumulation of sterols in ER membranes, which triggers binding of reductase to ER membrane proteins called Insig-1 and Insig-2. Insig binding leads to the recruitment of a membrane-associated ubiquitin ligase called gp78 that initiates ubiquitination of reductase. Ubiquitinated reductase then becomes extracted from ER membranes and is delivered to cytosolic 26S proteasomes through an unknown mechanism that is mediated by the gp78-associated ATPase Valosin-containing protein/p97 and appears to be augmented by nonsterol isoprenoids. Here, we will highlight several advances that have led to the current view of mechanisms for sterol-accelerated, ER-associated degradation of reductase. In addition, we will discuss potential mechanisms for other aspects of the pathway such as selection of reductase for gp78-mediated ubiquitination, extraction of the ubiquitinated enzyme from ER membranes, and the contribution of Insig-mediated degradation to overall regulation of reductase in whole animals.


Asunto(s)
Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Hidroximetilglutaril-CoA Reductasas/metabolismo , Animales , Humanos , Receptores del Factor Autocrino de Motilidad , Receptores de Citocinas/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
16.
Cell Metab ; 5(2): 81-3, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17276348

RESUMEN

In this issue of Cell Metabolism, Espenshade and colleagues (Hughes et al., 2007) show that the hemoprotein Dap1/PGRMC1 forms a stable complex with several members of the cytochrome P450 superfamily of enzymes and positively regulates their activities. This action indicates an important role for Dap1/PGRMC1 in P450-catalyzed reactions, some of which are involved in the metabolism of sterols and pharmaceutical compounds.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Unión Proteica , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
17.
Cell Metab ; 6(2): 115-28, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17681147

RESUMEN

The membrane-anchored ubiquitin ligase gp78 promotes degradation of misfolded endoplasmic reticulum (ER) proteins and sterol-regulated degradation of HMG-CoA reductase. It was known previously that Ufd1 plays a critical role in ER-associated degradation (ERAD) together with Npl4 and VCP. The VCP-Ufd1-Npl4 complex recognizes polyubiquitin chains and transfers the ubiquitinated proteins to the proteasome. Here we show that Ufd1 directly interacts with gp78 and functions as a cofactor. Ufd1 enhances the E3 activity of gp78, accelerates the ubiquitination and degradation of reductase, and eventually promotes receptor-mediated uptake of low-density lipoprotein. Furthermore, we demonstrate that the monoubiquitin-binding site in Ufd1 is required for the enhancement of gp78 activity and that the polyubiquitin-binding site in Ufd1 is critical for a postubiquitination step in ERAD. In summary, our study identifies Ufd1 as a cofactor of gp78, reveals an unappreciated function of Ufd1 in the ubiquitination reaction during ERAD, and illustrates that Ufd1 plays a critical role in cholesterol metabolism.


Asunto(s)
Colesterol/metabolismo , Hidroximetilglutaril-CoA Reductasas/metabolismo , Proteínas/metabolismo , Receptores de Citocinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Aminoácidos , Animales , Sitios de Unión , Células CHO , Línea Celular , Cricetinae , Cricetulus , Estabilidad de Enzimas , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lipoproteínas LDL/metabolismo , Modelos Biológicos , Unión Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Receptores del Factor Autocrino de Motilidad , Receptores de Citocinas/química , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química
18.
J Biol Chem ; 286(17): 15022-31, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21343306

RESUMEN

The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway in the yeast Saccharomyces cerevisiae is mediated by two membrane-bound ubiquitin ligases, Doa10 and Hrd1. These enzymes are found in distinct multiprotein complexes that allow them to recognize and target a variety of substrates for proteasomal degradation. Although multiprotein complexes containing mammalian ERAD ubiquitin ligases likely exist, they have yet to be identified and characterized in detail. Here, we identify two ER membrane proteins, SPFH2 and TMUB1, as associated proteins of mammalian gp78, a membrane-bound ubiquitin ligase that bears significant sequence homology with mammalian Hrd1 and mediates sterol-accelerated ERAD of the cholesterol biosynthetic enzyme HMG-CoA reductase. Co-immunoprecipitation studies indicate that TMUB1 bridges SPFH2 to gp78 in ER membranes. The functional significance of these interactions is revealed by the observation that RNA interference (RNAi)-mediated knockdown of SPFH2 and TMUB1 blunts both the sterol-induced ubiquitination and degradation of endogenous reductase in HEK-293 cells. These studies mark the initial steps in the characterization of the mammalian gp78 ubiquitin ligase complex, the further elucidation of which may yield important insights into mechanisms underlying gp78-mediated ERAD.


Asunto(s)
Hidroximetilglutaril-CoA Reductasas/metabolismo , Receptores de Citocinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ligasas , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos , Proteínas Nucleares/metabolismo , Estabilidad Proteica , Receptores del Factor Autocrino de Motilidad , Esteroles/farmacología
19.
Artículo en Inglés | MEDLINE | ID: mdl-35940903

RESUMEN

3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is an endoplasmic reticulum (ER)-localized integral membrane protein that catalyzes the rate-limiting step in the synthesis of cholesterol and many nonsterol isoprenoids including geranylgeranyl pyrophosphate (GGpp). HMGCR is subjected to strict feedback control through multiple mechanisms to ensure cells constantly produce essential nonsterol isoprenoids, but do not overaccumulate cholesterol. Here, we focus on the mechanism of feedback control of HMGCR that involves its sterol-induced ubiquitination and ER-associated degradation (ERAD) that is augmented by GGpp. We will also discuss the how GGpp-regulated intracellular trafficking of the vitamin K2 synthetic enzyme UbiA prenyltransferase domain-containing protein-1 (UBIAD1) inhibits HMGCR ERAD to balance the synthesis of sterol and nonsterol isoprenoids. Finally, we will summarize various mouse models, the characterization of which establish that sterol-accelerated, UBIAD1-modulated ERAD plays a major role in regulation of HMGCR and cholesterol metabolism in vivo.


Asunto(s)
Dimetilaliltranstransferasa , Hidroximetilglutaril-CoA Reductasas , Ratones , Animales , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Esteroles/metabolismo , Esteroles/farmacología , Colesterol/metabolismo , Terpenos/metabolismo , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo
20.
Nat Commun ; 13(1): 4273, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879350

RESUMEN

3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is the rate-limiting enzyme in cholesterol synthesis and target of cholesterol-lowering statin drugs. Accumulation of sterols in endoplasmic reticulum (ER) membranes accelerates degradation of HMGCR, slowing the synthesis of cholesterol. Degradation of HMGCR is inhibited by its binding to UBIAD1 (UbiA prenyltransferase domain-containing protein-1). This inhibition contributes to statin-induced accumulation of HMGCR, which limits their cholesterol-lowering effects. Here, we report cryo-electron microscopy structures of the HMGCR-UBIAD1 complex, which is maintained by interactions between transmembrane helix (TM) 7 of HMGCR and TMs 2-4 of UBIAD1. Disrupting this interface by mutagenesis prevents complex formation, enhancing HMGCR degradation. TMs 2-6 of HMGCR contain a 170-amino acid sterol sensing domain (SSD), which exists in two conformations-one of which is essential for degradation. Thus, our data supports a model that rearrangement of the TMs in the SSD permits recruitment of proteins that initate HMGCR degradation, a key reaction in the regulatory system that governs cholesterol synthesis.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Colesterol/metabolismo , Microscopía por Crioelectrón , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Esteroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA