RESUMEN
Blue foods, sourced in aquatic environments, are important for the economies, livelihoods, nutritional security and cultures of people in many nations. They are often nutrient rich1, generate lower emissions and impacts on land and water than many terrestrial meats2, and contribute to the health3, wellbeing and livelihoods of many rural communities4. The Blue Food Assessment recently evaluated nutritional, environmental, economic and justice dimensions of blue foods globally. Here we integrate these findings and translate them into four policy objectives to help realize the contributions that blue foods can make to national food systems around the world: ensuring supplies of critical nutrients, providing healthy alternatives to terrestrial meat, reducing dietary environmental footprints and safeguarding blue food contributions to nutrition, just economies and livelihoods under a changing climate. To account for how context-specific environmental, socio-economic and cultural aspects affect this contribution, we assess the relevance of each policy objective for individual countries, and examine associated co-benefits and trade-offs at national and international scales. We find that in many African and South American nations, facilitating consumption of culturally relevant blue food, especially among nutritionally vulnerable population segments, could address vitamin B12 and omega-3 deficiencies. Meanwhile, in many global North nations, cardiovascular disease rates and large greenhouse gas footprints from ruminant meat intake could be lowered through moderate consumption of seafood with low environmental impact. The analytical framework we provide also identifies countries with high future risk, for whom climate adaptation of blue food systems will be particularly important. Overall the framework helps decision makers to assess the blue food policy objectives most relevant to their geographies, and to compare and contrast the benefits and trade-offs associated with pursuing these objectives.
Asunto(s)
Organismos Acuáticos , Seguridad Alimentaria , Internacionalidad , Alimentos Marinos , Desarrollo Sostenible , Humanos , Dieta/métodos , Dieta/estadística & datos numéricos , Dieta/tendencias , Ambiente , Carne , Estado Nutricional , Internacionalidad/legislación & jurisprudencia , Alimentos Marinos/economía , Alimentos Marinos/estadística & datos numéricos , Alimentos Marinos/provisión & distribución , Desarrollo Sostenible/economía , Desarrollo Sostenible/legislación & jurisprudencia , Desarrollo Sostenible/tendencias , Seguridad Alimentaria/economía , Seguridad Alimentaria/legislación & jurisprudencia , Seguridad Alimentaria/métodos , Cambio Climático , Política de Salud , Política Ambiental , Factores Socioeconómicos , Características Culturales , Ácidos Grasos Omega-3 , Huella de Carbono , Enfermedades Cardiovasculares/epidemiologíaRESUMEN
The stability and resilience of the Earth system and human well-being are inseparably linked1-3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.
Asunto(s)
Cambio Climático , Planeta Tierra , Justicia Ambiental , Internacionalidad , Seguridad , Humanos , Aerosoles/metabolismo , Clima , Agua/metabolismo , Nutrientes/metabolismo , Seguridad/legislación & jurisprudencia , Seguridad/normasRESUMEN
Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy.
Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Política Ambiental/tendencias , Actividades Humanas/tendencias , Dieta , Dieta Vegetariana/tendencias , Abastecimiento de Alimentos , Humanos , Desarrollo Sostenible/tendenciasRESUMEN
The food system is a major driver of climate change, changes in land use, depletion of freshwater resources, and pollution of aquatic and terrestrial ecosystems through excessive nitrogen and phosphorus inputs. Here we show that between 2010 and 2050, as a result of expected changes in population and income levels, the environmental effects of the food system could increase by 50-90% in the absence of technological changes and dedicated mitigation measures, reaching levels that are beyond the planetary boundaries that define a safe operating space for humanity. We analyse several options for reducing the environmental effects of the food system, including dietary changes towards healthier, more plant-based diets, improvements in technologies and management, and reductions in food loss and waste. We find that no single measure is enough to keep these effects within all planetary boundaries simultaneously, and that a synergistic combination of measures will be needed to sufficiently mitigate the projected increase in environmental pressures.
Asunto(s)
Agricultura/métodos , Agricultura/tendencias , Ambiente , Abastecimiento de Alimentos , Desarrollo Sostenible , Cambio Climático , Productos Agrícolas/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , IncertidumbreRESUMEN
Declining biodiversity and ecosystem functions put many of nature's contributions to people at risk. We review and synthesize the scientific literature to assess 50-y global trends across a broad range of nature's contributions. We distinguish among trends in potential and realized contributions of nature, as well as environmental conditions and the impacts of changes in nature on human quality of life. We find declining trends in the potential for nature to contribute in the majority of material, nonmaterial, and regulating contributions assessed. However, while the realized production of regulating contributions has decreased, realized production of agricultural and many material commodities has increased. Environmental declines negatively affect quality of life, but social adaptation and the availability of substitutes partially offset this decline for some of nature's contributions. Adaptation and substitutes, however, are often imperfect and come at some cost. For many of the contributions of nature, we find differing trends across different countries and regions, income classes, and ethnic and social groups, reinforcing the argument for more consistent and equitable measurement.
RESUMEN
The idea that noncrop habitat enhances pest control and represents a win-win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win-win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies.
Asunto(s)
Productos Agrícolas , Ecosistema , Modelos Biológicos , Control Biológico de Vectores , Animales , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/parasitologíaRESUMEN
The Sustainable Development Goals (SDGs) emphasize the global and multi-dimensional nature of sustainability and thus require improving our capacity to articulate and trace the impact of ecosystem change to measures of human well-being. Yet, the integrated nature of these goals is challenging to assess without similarly integrated assessment tools. We present a new modeling toolkit, "Mapping Ecosystem Services to Human well-being" (MESH), that integrates commonly used, stand-alone ecosystem services (ES) models from the InVEST suite of models to quantify and illustrate the trade-offs and synergies across five ecosystem services and up to 10 associated SDGs. Development of the software and its functionality were informed by a broad stakeholder consultation with ministries, non-governmental organizations and civil society groups in West Africa to identify common barriers to uptake and application of modeling tools in developing countries. In light of this process, key features included in MESH are (1) integration of multiple ecosystem service (ES) models into a common modeling framework supported by a curated base data set, (2) built-in scenario generation capacity to support policy analysis, (3) visualization of outcomes and trade-offs, and (4) mapping of ecosystem service change to SDG targets and goals. We illustrate the use of MESH in a case study in the Volta basin of West Africa comparing the effectiveness of three alternative conservation prioritization approaches: (1) land cover-based, (2) topographic-based, and (3) an ecosystem service-based approach to minimize the impact of agricultural expansion. We evaluate these approaches by linking changes in service supply to potential impacts on achievement of specific SDG goals and targets.
Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Agricultura , Objetivos , Humanos , Desarrollo SostenibleRESUMEN
OBJECTIVE: Dietary diversity is associated with nutrient adequacy and positive health outcomes but indicators to measure diversity have focused primarily on consumption, rather than sustainable provisioning of food. The Nutritional Functional Diversity score was developed by ecologists to describe the contribution of biodiversity to sustainable diets. We have employed this tool to estimate the relative contribution of home production and market purchases in providing nutritional diversity to agricultural households in Malawi and examine how food system provisioning varies by time, space and socio-economic conditions. DESIGN: A secondary analysis of nationally representative household consumption data to test the applicability of the Nutritional Functional Diversity score. SETTING: The data were collected between 2010 and 2011 across the country of Malawi. SUBJECTS: Households (n 11 814) from predominantly rural areas of Malawi. RESULTS: Nutritional Functional Diversity varied demographically, geographically and temporally. Nationally, purchased foods contributed more to household nutritional diversity than home produced foods (mean score=17·5 and 7·8, respectively). Households further from roads and population centres had lower overall diversity (P<0·01) and accessed relatively more of their diversity from home production than households closer to market centres (P<0·01). Nutritional diversity was lowest during the growing season when farmers plant and tend crops (P<0·01). CONCLUSIONS: The present analysis demonstrates that the Nutritional Functional Diversity score is an effective indicator for identifying populations with low nutritional diversity and the relative roles that markets, agricultural extension and home production play in achieving nutritional diversity. This information may be used by policy makers to plan agricultural and market-based interventions that support sustainable diets and local food systems.
Asunto(s)
Conservación de los Recursos Naturales , Dieta/efectos adversos , Política Ambiental , Abastecimiento de Alimentos , Modelos Biológicos , Política Nutricional , Cooperación del Paciente , Biodiversidad , Comportamiento del Consumidor , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Dieta/economía , Dieta/etnología , Composición Familiar , Femenino , Abastecimiento de Alimentos/economía , Humanos , Malaui , Masculino , Encuestas Nutricionales , Cooperación del Paciente/etnología , Evaluación de Programas y Proyectos de Salud , Salud Rural/economía , Salud Rural/etnología , Estaciones del AñoRESUMEN
PREMISE OF STUDY: Plant functional traits are commonly used as proxies for plant responses to environmental challenges, yet few studies have explored how functional trait distributions differ across gradients of land-use change. By comparing trait distributions in intact forests with those across land-use change gradients, we can improve our understanding of the ways land-use change alters the diversity and functioning of plant communities. METHODS: We examined how the variation and distribution of trait values for seven plant functional traits differ between reference natural forest and three types of land-use conversion (pasture, old-field, or "legacy" sites-regrowth following logging), landscape productivity (NPP) and vegetation strata (tree or non-tree "understory"), in a meta-analysis of studies from 15 landscapes across five continents. KEY RESULTS: Although trait variation often differed between land-uses within a landscape, these patterns were rarely consistent across landscapes. The variance and distribution of traits were more likely to differ consistently between natural forest and land-use conversion categories for understory (non-tree) plants than for trees. Landscape productivity did not significantly alter the difference in trait variance between natural forest and land-use conversion categories for any trait except dispersal. CONCLUSIONS: Our results suggest that even for traits well linked to plant environmental response strategies, broad classes of land-use change and landscape productivity are not generally useful indicators of the mechanisms driving compositional changes in human-modified forest systems.
Asunto(s)
Ecosistema , Fenómenos Fisiológicos de las Plantas , Árboles/fisiología , Demografía , Monitoreo del AmbienteRESUMEN
This Analysis presents a recently developed food system indicator framework and holistic monitoring architecture to track food system transformation towards global development, health and sustainability goals. Five themes are considered: (1) diets, nutrition and health; (2) environment, natural resources and production; (3) livelihoods, poverty and equity; (4) governance; and (5) resilience. Each theme is divided into three to five indicator domains, and indicators were selected to reflect each domain through a consultative process. In total, 50 indicators were selected, with at least one indicator available for every domain. Harmonized data of these 50 indicators provide a baseline assessment of the world's food systems. We show that every country can claim positive outcomes in some parts of food systems, but none are among the highest ranked across all domains. Furthermore, some indicators are independent of national income, and each highlights a specific aspiration for healthy, sustainable and just food systems. The Food Systems Countdown Initiative will track food systems annually to 2030, amending the framework as new indicators or better data emerge.
Asunto(s)
Abastecimiento de AlimentosRESUMEN
Crop pest and disease incidences at plot scale vary as a result of landscape effects. Two main effects can be distinguished. First, landscape context provides habitats of variable quality for pests, pathogens, and beneficial and vector organisms. Second, the movements of these organisms are dependent on the connectivity status of the landscape. Most of the studies focus on indirect effects of landscape context on pest abundance through their predators and parasitoids, and only a few on direct effects on pests and pathogens. Here we studied three coffee pests and pathogens, with limited or no pressure from host-specific natural enemies, and with widely varying life histories, to test their relationships with landscape context: a fungus, Hemileia vastatrix, causal agent of coffee leaf rust; an insect, the coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae); and root-knot nematodes, Meloidogyne spp. Their incidence was assessed in 29 coffee plots from Turrialba, Costa Rica. In addition, we characterized the landscape context around these coffee plots in 12 nested circular sectors ranging from 50 to 1500 m in radius. We then performed correlation analysis between proportions of different land uses at different scales and coffee pest and disease incidences. We obtained significant positive correlations, peaking at the 150 m radius, between coffee berry borer abundance and proportion of coffee in the landscape. We also found significant positive correlations between coffee leaf rust incidence and proportion of pasture, peaking at the 200 m radius. Even after accounting for plot level predictors of coffee leaf rust and coffee berry borer through covariance analysis, the significance of landscape structure was maintained. We hypothesized that connected coffee plots favored coffee berry borer movements and improved its survival. We also hypothesized that wind turbulence, produced by low-wind-resistance land uses such as pasture, favored removal of coffee leaf rust spore clusters from host surfaces, resulting in increased epidemics. In contrast, root-knot nematode population density was not correlated to landscape context, possibly because nematodes are almost immobile in the soil. We propose fragmenting coffee plots with forest corridors to control coffee berry borer movements between coffee plots without favoring coffee leaf rust dispersal.
Asunto(s)
Basidiomycota , Coffea/microbiología , Coffea/parasitología , Nematodos/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Agricultura , Animales , Escarabajos/fisiología , Ecosistema , Hojas de la Planta/microbiología , Raíces de Plantas/parasitología , Saccharum , ÁrbolesRESUMEN
BACKGROUND: Malnutrition affects a large number of people throughout the developing world. Approaches to reducing malnutrition rarely focus on ecology and agriculture to simultaneously improve human nutrition and environmental sustainability. However, evidence suggests that interdisciplinary approaches that combine the knowledge bases of these disciplines can serve as a central strategy in alleviating hidden hunger for the world's poorest. OBJECTIVE: To describe the role that ecological knowledge plays in alleviating hidden hunger, considering human nutrition as an overlooked ecosystem service. METHODS: We review existing literature and propose a framework that expands on earlier work on econutrition. We provide novel evidence from case studies conducted by the authors in western Kenya and propose a framework for interdisciplinary collaboration to alleviate hidden hunger, increase agricultural productivity, and improve environmental sustainability. RESULTS: Our review supports the concept that an integrated approach will impact human nutrition. We provide evidence that increased functional agrobiodiversity can alleviate anemia, and interventions that contribute to environmental sustainability can have both direct and indirect effects on human health and nutritional well-being. CONCLUSIONS: Integrated and interdisciplinary approaches are critical to reaching development goals. Ecologists must begin to consider not only how their field can contribute to biodiversity conservation, but also, the relationship between biodiversity and provisioning of nontraditional ecosystem services such as human health. Likewise, nutritionists and agronomists must recognize that many of the solutions to increasing human wellbeing and health can best be achieved by focusing on a healthy environment and the conservation of ecosystem services.
Asunto(s)
Biodiversidad , Ecología/métodos , Estado Nutricional , Conservación de los Recursos Naturales , Ambiente , Salud Ambiental , Promoción de la Salud , Humanos , Kenia , Pobreza , Factores SocioeconómicosRESUMEN
Credibility, legitimacy, and diversity of knowledge are critical.
Asunto(s)
Industria de Alimentos , Formulación de Políticas , Agricultura , Humanos , PolíticasRESUMEN
Ecosystem resilience depends on functional redundancy (the number of species contributing similarly to an ecosystem function) and response diversity (how functionally similar species respond differently to disturbance). Here, we explore how land-use change impacts these attributes in plant communities, using data from 18 land-use intensity gradients that represent five biomes and > 2800 species. We identify functional groups using multivariate analysis of plant traits which influence ecosystem processes. Functional redundancy is calculated as the species richness within each group, and response diversity as the multivariate within-group dispersion in response trait space, using traits that influence responses to disturbances. Meta-analysis across all datasets showed that land-use intensification significantly reduced both functional redundancy and response diversity, although specific relationships varied considerably among the different land-use gradients. These results indicate that intensified management of ecosystems for resource extraction can increase their vulnerability to future disturbances.
Asunto(s)
Agricultura , Biodiversidad , Fenómenos Fisiológicos de las Plantas , Bases de Datos Factuales , Modelos Biológicos , Dinámica PoblacionalRESUMEN
Land use intensification can greatly reduce species richness and ecosystem functioning. However, species richness determines ecosystem functioning through the diversity and values of traits of species present. Here, we analyze changes in species richness and functional diversity (FD) at varying agricultural land use intensity levels. We test hypotheses of FD responses to land use intensification in plant, bird, and mammal communities using trait data compiled for 1600+ species. To isolate changes in FD from changes in species richness we compare the FD of communities to the null expectations of FD values. In over one-quarter of the bird and mammal communities impacted by agriculture, declines in FD were steeper than predicted by species number. In plant communities, changes in FD were indistinguishable from changes in species richness. Land use intensification can reduce the functional diversity of animal communities beyond changes in species richness alone, potentially imperiling provisioning of ecosystem services.
Asunto(s)
Adaptación Biológica/fisiología , Agricultura , Biodiversidad , Aves/fisiología , Mamíferos/fisiología , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Animales , América Central , Bases de Datos Factuales , América del Norte , Dinámica Poblacional , Especificidad de la EspecieRESUMEN
In agroecosystems, biodiversity correlates with ecosystem function, yet mechanisms driving these relationships are often unknown. Examining traits and functional classifications of organisms providing ecosystem functions may provide insight into the mechanisms. Birds are important predators of insects, including pests. However, biological simplification of agroforests may decrease provisioning of this pest removal service by reducing bird taxonomic and functional diversity. A recent meta-analysis of bird exclosure studies from a range of agroecosystems in Central America concluded that higher bird richness is associated with significantly greater arthropod removal, yet the mechanism remains unclear. We conducted a meta-analysis of the same data to examine whether birds demonstrate functional complementarity in tropical agroforests. We classified birds according to relevant traits (body mass, foraging strategy, foraging Strata, and diet) and then examined how design of functional classification, including trait selection, classification methods, and the functional diversity metric used affect the suitability of different classifications as predictors of ecosystem services. We determined that vegetation characteristics are not likely drivers of arthropod removal by birds. For some functional classifications, functional richness positively correlated with arthropod removal, indicating that species complementarity may be an important mechanism behind this ecosystem function. The predictive ability of functional classifications increased with the number of traits included in the classification. For the two best classifications examined, functional group richness was a better predictor of arthropod reduction than other metrics of functional diversity (FD and Rao's Q). However, no functional classification predicted arthropod removal better than simple species richness; thus other factors may be important. Our analysis indicates that the sampling effect may also play a role, as one species and two functional groups were responsible for disproportionate effects of arthropod removal.