Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 19(1): 314-326, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31729880

RESUMEN

Schistosomes are blood-dwelling helminth parasites that cause schistosomiasis, a debilitating disease resulting in inflammation and, in extreme cases, multiple organ damage. Major challenges to control the transmission persist, and the discovery of protective antigens remains of critical importance for vaccine development. Rhesus macaques can self-cure following schistosome infection, generating antibodies that target proteins from the tegument, gut, and esophagus, the last of which is the least investigated. We developed a dissection technique that permitted increased sensitivity in a comparative proteomics profiling of schistosome esophagus and gut. Proteome analysis of the male schistosome esophagus identified 13 proteins encoded by microexon genes (MEGs), 11 of which were uniquely located in the esophageal glands. Based on this and transcriptome information, a QconCAT was designed for the absolute quantification of selected targets. MEGs 12, 4.2, and 4.1 and venom allergen-like protein 7 were the most abundant, spanning over 245 million to 6 million copies per cell, while aspartyl protease, palmitoyl thioesterase, and galactosyl transferase were present at <1 million copies. Antigenic variation by alternative splicing of MEG proteins was confirmed together with a specialized machinery for protein glycosylation/secretion in the esophagus. Moreover, some gastrodermal secretions were highly enriched in the gut, while others were more uniformly distributed throughout the parasite, potentially indicating lysosomal activity. Collectively, our findings provide a more rational, better-oriented selection of schistosome vaccine candidates in the context of a proven model of protective immunity.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Proteínas del Helminto/metabolismo , Proteómica/métodos , Schistosoma mansoni/metabolismo , Animales , Esófago/metabolismo , Ontología de Genes , Proteínas del Helminto/análisis , Proteínas del Helminto/genética , Masculino , Ratones , Schistosoma mansoni/patogenicidad , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
2.
Funct Integr Genomics ; 19(5): 787-797, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31089837

RESUMEN

Septins are GTP-binding proteins that polymerize to form filaments involved in several important biological processes. In human, 13 distinct septins genes are classified in four groups. Filaments formed by septins are complex and usually involve members of each group in specific positions. Expression data from GTEx database, a publicly available expression database with thousands of samples derived from multiple human tissues, was used to evaluate the expression of septins. The brain is noticeably a hotspot for septin expression where few genes contribute to a large portion of septin transcript pool. Co-expression data between septins suggests two predominant specific complexes in brain tissues and one filament in other tissues. SEPT3 and SEPT5 are two genes highly expressed in the brain and with a strong co-expression in all brain tissues. Additional analysis shows that the expression of these two genes is highly variable between individuals, but significantly dependent on the individual's age. Age-dependent decrease of expression from those two septins involved in synapses reinforces their possible link with cognitive decay and neurodegenerative diseases associated with aging. Analysis of enrichment of Gene Ontology terms from lists of genes consistently co-expressed with septins suggests participation in diverse biological processes, pointing out some novel roles for septins. Interestingly, we observed strong consistency of some of these terms with experimentally described roles of septins. Coordination of septins expression with genes involved in DNA repair and cell cycle control may provide insights for previously described links between septins and cancer.


Asunto(s)
Regulación de la Expresión Génica , Septinas/clasificación , Septinas/metabolismo , Adulto , Factores de Edad , Anciano , Humanos , Persona de Mediana Edad , Septinas/genética , Distribución Tisular , Adulto Joven
3.
J Med Virol ; 91(7): 1250-1262, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30815882

RESUMEN

The role of human adenovirus (HAdV) infection in different acute diseases, such as febrile exudative tonsillitis, conjunctivitis, and pharyngoconjunctival fever is well established. However, the relationships, if any, of HAdV persistence and reactivation in the development of the chronic adenotonsillar disease is not fully understood. The present paper reports a 3-year cross-sectional hospital-based study aimed at detecting and quantifying HAdV DNA and mRNA of the HAdV hexon gene in adenoid and palatine tonsil tissues and nasopharyngeal secretions (NPS) from patients with adenotonsillar hypertrophy or recurrent adenotonsillitis. HAdV C, B, and E were detectable in nearly 50% of the patients, with no association with the severity of airway obstruction, nor with the presence of recurrent tonsillitis, sleep apnea or otitis media with effusion (OME). Despite the higher rates of respiratory viral coinfections in patients with HAdV, the presence of other viruses, including DNA and RNA viruses, had no association with HAdV replication or shedding in secretions. Higher HAdV loads in adenoids showed a significant positive correlation with the presence of sleep apnea and the absence of OME. Although this study indicates that a significant proportion (~85%) of individuals with chronic adenotonsillar diseases have persistent nonproductive HAdV infection, including those by HAdV C, B, and E, epithelial and subepithelial cells in tonsils seem to be critical for HAdV C production and shedding in NPS in some patients, since viral antigen was detected in these regions by immunohistochemistry in four patients, all of which were also positive for HAdV mRNA detection.


Asunto(s)
Tonsila Faríngea/virología , Infecciones por Adenovirus Humanos/virología , Tonsila Palatina/virología , Replicación Viral , Tonsila Faríngea/patología , Infecciones por Adenovirus Humanos/diagnóstico , Adenovirus Humanos/clasificación , Adenovirus Humanos/aislamiento & purificación , Adenovirus Humanos/fisiología , Adolescente , Niño , Preescolar , Estudios Transversales , ADN Viral/aislamiento & purificación , Femenino , Humanos , Hipertrofia , Lactante , Masculino , Tonsila Palatina/patología , Tonsilitis/virología
4.
J Biol Chem ; 292(26): 10899-10911, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28476887

RESUMEN

Septins are filament-forming GTP-binding proteins involved in many essential cellular events related to cytoskeletal dynamics and maintenance. Septins can self-assemble into heterocomplexes, which polymerize into highly organized, cell membrane-interacting filaments. The number of septin genes varies among organisms, and although their structure and function have been thoroughly studied in opisthokonts (including animals and fungi), no structural studies have been reported for other organisms. This makes the single septin from Chlamydomonas (CrSEPT) a particularly attractive model for investigating whether functional homopolymeric septin filaments also exist. CrSEPT was detected at the base of the flagella in Chlamydomonas, suggesting that CrSEPT is involved in the formation of a membrane-diffusion barrier. Using transmission electron microscopy, we observed that recombinant CrSEPT forms long filaments with dimensions comparable with those of the canonical structure described for opisthokonts. The GTP-binding domain of CrSEPT purified as a nucleotide-free monomer that hydrolyzes GTP and readily binds its analog guanosine 5'-3-O-(thio)triphosphate. We also found that upon nucleotide binding, CrSEPT formed dimers that were stabilized by an interface involving the ligand (G-interface). Across this interface, one monomer supplied a catalytic arginine to the opposing subunit, greatly accelerating the rate of GTP hydrolysis. This is the first report of an arginine finger observed in a septin and suggests that CrSEPT may act as its own GTP-activating protein. The finger is conserved in all algal septin sequences, suggesting a possible correlation between the ability to form homopolymeric filaments and the accelerated rate of hydrolysis that it provides.


Asunto(s)
Chlamydomonas reinhardtii/química , Complejos Multiproteicos/química , Proteínas de Plantas/química , Multimerización de Proteína , Septinas/química , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Septinas/genética , Septinas/metabolismo
5.
Extremophiles ; 22(5): 781-793, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30014242

RESUMEN

The biotechnological and industrial uses of thermostable and organic solvent-tolerant enzymes are extensive and the investigation of such enzymes from microbiota present in oil reservoirs is a promising approach. Searching sequence databases for esterases from such microbiota, we have identified in silico a potentially secreted esterase from Acetomicrobium hydrogeniformans, named AhEst. The recombinant enzyme was produced in E. coli to be used in biochemical and biophysical characterization studies. AhEst presented hydrolytic activity on short-acyl-chain p-nitrophenyl ester substrates. AhEst activity was high and stable in temperatures up to 75 °C. Interestingly, high salt concentration induced a significant increase of catalytic activity. AhEst still retained ~ 50% of its activity in 30% concentration of several organic solvents. Synchrotron radiation circular dichroism and fluorescence spectroscopies confirmed that AhEst displays high structural stability in extreme conditions of temperature, salinity, and organic solvents. The enzyme is a good emulsifier agent and is able to partially reverse the wettability of an oil-wet carbonate substrate, making it of potential interest for use in enhanced oil recovery. All the traits observed in AhEst make it an interesting candidate for many industrial applications, such as those in which a significant hydrolytic activity at high temperatures is required.


Asunto(s)
Proteínas Bacterianas/metabolismo , Esterasas/metabolismo , Ambientes Extremos , Desnaturalización Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Esterasas/química , Esterasas/genética , Calor , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salinidad , Solventes/química , Especificidad por Sustrato
6.
Can J Infect Dis Med Microbiol ; 2018: 5406467, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30515253

RESUMEN

We sought to investigate the prevalence of potentially pathogenic bacteria in secretions and tonsillar tissues of children with chronic adenotonsillitis hypertrophy compared to controls. Prospective case-control study comparing patients between 2 and 12 years old who underwent adenotonsillectomy due to chronic adenotonsillar hypertrophy to children without disease. We compared detection of Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Pseudomonas aeruginosa, and Moraxella catarrhalis by real-time PCR in palatine tonsils, adenoids, and nasopharyngeal washes obtained from 37 children with and 14 without adenotonsillar hypertrophy. We found high frequency (>50%) of Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis, and Pseudomonas aeruginosa in both groups of patients. Although different sampling sites can be infected with more than one bacterium and some bacteria can be detected in different tissues in the same patient, adenoids, palatine tonsils, and nasopharyngeal washes were not uniformly infected by the same bacteria. Adenoids and palatine tonsils of patients with severe adenotonsillar hypertrophy had higher rates of bacterial coinfection. There was good correlation of detection of Moraxella catarrhalis in different sampling sites in patients with more severe tonsillar hypertrophy, suggesting that Moraxella catarrhalis may be associated with the development of more severe hypertrophy, that inflammatory conditions favor colonization by this agent. Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis are frequently detected in palatine tonsils, adenoids, and nasopharyngeal washes in children. Simultaneous detection of Moraxella catarrhalis in adenoids, palatine tonsils, and nasopharyngeal washes was correlated with more severe tonsillar hypertrophy.

7.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1326-1335, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28807888

RESUMEN

The parasite Schistosoma mansoni possess all pathways for pyrimidine biosynthesis, whereby deaminases play an essential role in the thymidylate cycle, a crucial step to controlling the ratio between cytidine and uridine nucleotides. In this study, we heterologously expressed and purified the deoxycytidylate (dCMP) deaminase from S. mansoni to obtain structural, biochemical and kinetic information. Small-angle X-ray scattering of this enzyme showed that it is organized as a hexamer in solution. Isothermal titration calorimetry was used to determine the kinetic constants for dCMP-dUMP conversion and the role of dCTP and dTTP in enzymatic regulation. We evaluated the metals involved in activating the enzyme and show for the first time the dependence of correct folding on the interaction of two metals. This study provides information that may be useful for understanding the regulatory mechanisms involved in the metabolic pathways of S. mansoni. Thus, improving our understanding of the function of these essential pathways for parasite metabolism and showing for the first time the hitherto unknown deaminase function in this parasite.


Asunto(s)
DCMP Desaminasa/química , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxiuracil/química , Magnesio/química , Proteínas Protozoarias/química , Schistosoma mansoni/enzimología , Zinc/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cationes Bivalentes , Cristalografía por Rayos X , DCMP Desaminasa/genética , DCMP Desaminasa/metabolismo , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiuracil/metabolismo , Expresión Génica , Cinética , Magnesio/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schistosoma mansoni/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Zinc/metabolismo
8.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3490-3497, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27639541

RESUMEN

BACKGROUND: The Micro-Exon Gene-14 (MEG-14) displays a remarkable structure that allows the generation of antigenic variation in Schistosomes. Previous studies showed that the soluble portion of the MEG-14 protein displays features of an intrinsically disordered protein and is expressed exclusively in the parasite esophageal gland. These features indicated a potential for interaction with host proteins present in the plasma and cells from ingested blood. METHODS: A yeast two-hybrid experiment using as bait the soluble domain of Schistosoma mansoni MEG-14 (sMEG-14) against a human leukocyte cDNA library was performed. Pull-down and surface plasmon resonance (SPR) experiments were used to validate the interaction between sMEG-14 and human S100A9. Synchrotron radiation circular dichroism (SRCD) were used to detect structural changes upon interaction between sMEG-14 and human S100A9. Feeding of live parasites with S100A9 attached to a fluorophore allowed the tracking of the fate of this protein in the parasite digestive system. RESULTS: S100A9 interacted with sMEG-14 consistently in yeast two-hybrid assay, pull-down and SPR experiments. SRCD suggested that MEG-14 acquired a more regular structure as a result of the interaction with S100A9. Accumulation of recombinant S100A9 in the parasite's esophageal gland, when ingested by live worms suggests that such interaction may occur in vivo. CONCLUSION: S100A9, a protein previously described to be involved in modulation of inflammatory response, was found to interact with sMEG-14. GENERAL SIGNIFICANCE: Our results allow proposing a mechanism involving MEG-14 for the parasite to block inflammatory signaling, which would occur upon release of S100A9 when ingested blood cells are lysed.


Asunto(s)
Esófago/metabolismo , Inflamación/patología , Proteínas Protozoarias/metabolismo , Proteínas S100/metabolismo , Schistosoma mansoni/metabolismo , Empalme Alternativo/genética , Animales , Dicroismo Circular , Cricetinae , Electroforesis en Gel de Poliacrilamida , Humanos , Unión Proteica , Estructura Secundaria de Proteína , Resonancia por Plasmón de Superficie , Técnicas del Sistema de Dos Híbridos
9.
Eur Biophys J ; 46(7): 599-606, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28258312

RESUMEN

The unordered secondary structural content of an intrinsically disordered protein (IDP) is susceptible to conformational changes induced by many different external factors, such as the presence of organic solvents, removal of water, changes in temperature, binding to partner molecules, and interaction with lipids and/or other ligands. In order to characterize the high-flexibility nature of an IDP, circular dichroism (CD) spectroscopy is a particularly useful method due to its capability of monitoring both subtle and remarkable changes in different environments, relative ease in obtaining measurements, the small amount of sample required, and the capability for sample recovery (sample not damaged) and others. Using synchrotron radiation as the light source for CD spectroscopy represents the state-of-the-art version of this technique with feasibility of accessing the lower wavelength UV region, and therefore presenting a series of advantages over conventional circular dichroism (cCD) to monitor a protein conformational behavior, check protein stability, detect ligand binding, and many others. In this paper, we have performed a comparative study using cCD and SRCD methods for investigating the secondary structure and the conformational behavior of natively unfolded proteins: MEG-14 and soybean trypsin inhibitor. We show that the SRCD technique greatly improves the analysis and accuracy of the studies on the conformations of IDPs.


Asunto(s)
Dicroismo Circular/instrumentación , Proteínas Intrínsecamente Desordenadas/química , Sincrotrones , Animales , Proteínas del Helminto/química , Proteínas de Plantas/química , Dominios Proteicos , Schistosoma mansoni , Solubilidad , Agua/química
10.
J Biol Chem ; 289(11): 7799-811, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24464615

RESUMEN

Septins are filament-forming GTP-binding proteins involved in important cellular events, such as cytokinesis, barrier formation, and membrane remodeling. Here, we present two crystal structures of the GTPase domain of a Schistosoma mansoni septin (SmSEPT10), one bound to GDP and the other to GTP. The structures have been solved at an unprecedented resolution for septins (1.93 and 2.1 Å, respectively), which has allowed for unambiguous structural assignment of regions previously poorly defined. Consequently, we provide a reliable model for functional interpretation and a solid foundation for future structural studies. Upon comparing the two complexes, we observe for the first time the phenomenon of a strand slippage in septins. Such slippage generates a front-back communication mechanism between the G and NC interfaces. These data provide a novel mechanistic framework for the influence of nucleotide binding to the GTPase domain, opening new possibilities for the study of the dynamics of septin filaments.


Asunto(s)
Schistosoma mansoni/química , Septinas/química , Animales , Sitios de Unión , Calorimetría , Catálisis , Membrana Celular/metabolismo , Cristalografía por Rayos X , Escherichia coli/metabolismo , GTP Fosfohidrolasas/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Hidrólisis , Magnesio/química , Espectroscopía de Resonancia Magnética , Nucleótidos/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Termodinámica , Agua/química
11.
Biochim Biophys Acta ; 1844(6): 1094-103, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24637331

RESUMEN

In eukaryotes, there are still steps of the vitamin B1 biosynthetic pathway not completely understood. In Arabidopsis thaliana, THI1 protein has been associated with the synthesis of the thiazole ring, a finding supported by the identification of a thiamine pyrophosphate (TPP)-like compound in its structure. Here, we investigated THI1 and its mutant THI1(A140V), responsible for the thiamin auxotrophy in a A. thaliana mutant line, aiming to clarify the impact of this mutation in the stability and activity of THI1. Recently, the THI1 orthologue (THI4) was revealed to be responsible for the donation of the sulfur atom from a cysteine residue to the thiazole ring in the thiamine intermediate. In this context, we carried out a cysteine quantification in THI1 and THI1(A140V) using electron spin resonance (ESR). These data showed that THI1(A140V) contains more sulfur-containing cysteines than THI1, indicating that the function as a sulfur donor is conserved, but the rate of donation reaction is somehow affected. Also, the bound compounds were isolated from both proteins and are present in different amounts in each protein. Unfolding studies presented differences in melting temperatures and also in the concentration of guanidine at which half of the protein unfolds, thus showing that THI1(A140V) has its conformational stability affected by the mutation. Hence, despite keeping its function in the early steps during the synthesis of TPP precursor, our studies have shown a decrease in the THI1(A140V) stability, which might be slowing down the biological activity of the mutant, and thus contributing to thiamin auxotrophy.


Asunto(s)
Alanina/química , Proteínas de Arabidopsis/química , Arabidopsis/química , Mutación , Tiamina/biosíntesis , Valina/química , Alanina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína/química , Cisteína/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Estabilidad Proteica , Desplegamiento Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo , Valina/metabolismo
12.
Nature ; 460(7253): 352-8, 2009 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-19606141

RESUMEN

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.


Asunto(s)
Genoma de los Helmintos/genética , Schistosoma mansoni/genética , Animales , Evolución Biológica , Exones/genética , Genes de Helminto/genética , Interacciones Huésped-Parásitos/genética , Intrones/genética , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/embriología , Schistosoma mansoni/fisiología , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/parasitología
13.
NPJ Vaccines ; 9(1): 5, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177171

RESUMEN

Schistosomiasis, a challenging neglected tropical disease, affects millions of people worldwide. Developing a prophylactic vaccine against Schistosoma mansoni has been hindered by the parasite's biological complexity. In this study, we utilized the innovative phage-display immunoprecipitation followed by a sequencing approach (PhIP-Seq) to screen the immune response of 10 infected rhesus macaques during self-cure and challenge-resistant phases, identifying vaccine candidates. Our high-throughput S. mansoni synthetic DNA phage-display library encoded 99.6% of 119,747 58-mer peptides, providing comprehensive coverage of the parasite's proteome. Library screening with rhesus macaques' antibodies, from the early phase of establishment of parasite infection, identified significantly enriched epitopes of parasite extracellular proteins known to be expressed in the digestive tract, shifting towards intracellular proteins during the late phase of parasite clearance. Immunization of mice with a selected pool of PhIP-Seq-enriched phage-displayed peptides from MEG proteins, cathepsins B, and asparaginyl endopeptidase significantly reduced worm burden in a vaccination assay. These findings enhance our understanding of parasite-host immune responses and provide promising prospects for developing an effective schistosomiasis vaccine.

14.
Biophys J ; 104(11): 2512-20, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23746524

RESUMEN

The micro-exon genes (MEG) of Schistosoma mansoni, a parasite responsible for the second most widely spread tropical disease, code for small secreted proteins with sequences unique to the Schistosoma genera. Bioinformatics analyses suggest the soluble domain of the MEG-14 protein will be largely disordered, and using synchrotron radiation circular dichroism spectroscopy, its secondary structure was shown to be essentially completely unfolded in aqueous solution. It does, however, show a strong propensity to fold into more ordered structures under a wide range of conditions. Partial folding was produced by increasing temperature (in a reversible process), contrary to the behavior of most soluble proteins. Furthermore, significant folding was observed in the presence of negatively charged lipids and detergents, but not in zwitterionic or neutral lipids or detergents. Absorption onto a surface followed by dehydration stimulated it to fold into a helical structure, as it did when the aqueous solution was replaced by nonaqueous solvents. Hydration of the dehydrated folded protein was accompanied by complete unfolding. These results support the identification of MEG-14 as a classic intrinsically disordered protein, and open the possibility of its interaction/folding with different partners and factors being related to multifunctional roles and states within the host.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Pliegue de Proteína , Secuencia de Aminoácidos , Detergentes/metabolismo , Metabolismo de los Lípidos , Datos de Secuencia Molecular , Agua/química
15.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 1): 126-36, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23275171

RESUMEN

In adult schistosomes, the enzyme adenosine kinase (AK) is responsible for the incorporation of some adenosine analogues, such as 2-fluoroadenosine and tubercidin, into the nucleotide pool, but not others. In the present study, the structures of four complexes of Schistosoma mansoni AK bound to adenosine and adenosine analogues are reported which shed light on this observation. Two differences in the adenosine-binding site in comparison with the human counterpart (I38Q and T36A) are responsible for their differential specificities towards adenosine analogues, in which the Schistosoma enzyme does not tolerate bulky substituents at the N7 base position. This aids in explaining experimental data which were reported in the literature more than two decades ago. Furthermore, there appears to be considerable plasticity within the substrate-binding sites that affects the side-chain conformation of Ile38 and causes a previously unobserved flexibility within the loop comprising residues 286-299. These results reveal that the latter can be sterically occluded in the absence of ATP. Overall, these results contribute to the body of knowledge concerning the enzymes of the purine salvage pathway in this important human parasite.


Asunto(s)
Adenosina Quinasa/química , Adenosina/química , Schistosoma mansoni/enzimología , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Animales , Cristalización , Cristalografía por Rayos X , Humanos , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo , Alineación de Secuencia , Especificidad por Sustrato/genética
16.
Genome Res ; 20(8): 1112-21, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20606017

RESUMEN

Schistosoma mansoni is a well-adapted blood-dwelling parasitic helminth, persisting for decades in its human host despite being continually exposed to potential immune attack. Here, we describe in detail micro-exon genes (MEG) in S. mansoni, some present in multiple copies, which represent a novel molecular system for creating protein variation through the alternate splicing of short (< or =36 bp) symmetric exons organized in tandem. Analysis of three closely related copies of one MEG family allowed us to trace several evolutionary events and propose a mechanism for micro-exon generation and diversification. Microarray experiments show that the majority of MEGs are up-regulated in life cycle stages associated with establishment in the mammalian host after skin penetration. Sequencing of RT-PCR products allowed the description of several alternate splice forms of micro-exon genes, highlighting the potential use of these transcripts to generate a complex pool of protein variants. We obtained direct evidence for the existence of such pools by proteomic analysis of secretions from migrating schistosomula and mature eggs. Whole-mount in situ hybridization and immunolocalization showed that MEG transcripts and proteins were restricted to glands or epithelia exposed to the external environment. The ability of schistosomes to produce a complex pool of variant proteins aligns them with the other major groups of blood parasites, but using a completely different mechanism. We believe that our data open a new chapter in the study of immune evasion by schistosomes, and their ability to generate variant proteins could represent a significant obstacle to vaccine development.


Asunto(s)
Empalme Alternativo/genética , Exones , Proteínas del Helminto/genética , Schistosoma mansoni/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Evolución Biológica , Datos de Secuencia Molecular , Proteómica , Homología de Secuencia de Aminoácido , Transcripción Genética , Regulación hacia Arriba
17.
Eur Arch Otorhinolaryngol ; 270(7): 2065-70, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23292041

RESUMEN

The Cilia represent one of the main mechanisms contributing to the clearance of microorganisms and particles from the respiratory epithelium. Primary ciliary dyskinesia (PCD) is a genetically determined disorder characterized by irreversible systemic dysmotility of the cilia. Secondary ciliary dyskinesia (SCD) differs from primary defects on the reversible ultrastructural alterations that can occur after any insult to a previously normal mucosa. Hence, this study aimed to describe and compare the main ultrastructural ciliary features in PCD and SCD through transmission electron microscopy. The most frequent PCD abnormalities were missing or short dynein arms, missing central microtubules, and displacement of one of the nine peripheral doublets. The most common changes found in SCD were compound cilia and peripheral microtubule alterations associated with modifications of the respiratory epithelium. PCD presented a higher percentage of altered cilia (>30 %) when compared to SCD (5 %), demonstrating that SCD is more limited in area than PCD. Whereas in PCD the changes in the dynein arms and in the central microtubules are fundamental for diagnostic confirmation, the diagnosis of SCD usually involves compound cilia and disarrangements in peripheral microtubules.


Asunto(s)
Cilios/ultraestructura , Trastornos de la Motilidad Ciliar/patología , Síndrome de Kartagener/patología , Mucosa Respiratoria/ultraestructura , Sinusitis/patología , Adolescente , Niño , Preescolar , Enfermedad Crónica , Trastornos de la Motilidad Ciliar/fisiopatología , Diagnóstico Diferencial , Femenino , Humanos , Síndrome de Kartagener/fisiopatología , Masculino , Microscopía Electrónica de Transmisión , Sinusitis/genética , Sinusitis/fisiopatología
18.
Nat Genet ; 35(2): 148-57, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12973350

RESUMEN

Schistosoma mansoni is the primary causative agent of schistosomiasis, which affects 200 million individuals in 74 countries. We generated 163,000 expressed-sequence tags (ESTs) from normalized cDNA libraries from six selected developmental stages of the parasite, resulting in 31,000 assembled sequences and 92% sampling of an estimated 14,000 gene complement. By analyzing automated Gene Ontology assignments, we provide a detailed view of important S. mansoni biological systems, including characterization of metazoa-specific and eukarya-conserved genes. Phylogenetic analysis suggests an early divergence from other metazoa. The data set provides insights into the molecular mechanisms of tissue organization, development, signaling, sexual dimorphism, host interactions and immune evasion and identifies novel proteins to be investigated as vaccine candidates and potential drug targets.


Asunto(s)
Schistosoma mansoni/genética , Transcripción Genética , Animales , Mapeo Cromosómico , Etiquetas de Secuencia Expresada , Genes de Helminto , Proteínas del Helminto/genética , Humanos , Datos de Secuencia Molecular , Schistosoma mansoni/patogenicidad , Schistosoma mansoni/fisiología , Esquistosomiasis mansoni/parasitología
19.
Exp Parasitol ; 132(1): 22-31, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21745473

RESUMEN

Schistosoma mansoni is one of the agents of schistosomiasis, a chronic and debilitating disease. Here we present a transcriptome-wide characterization of adult S. mansoni males by high-throughput RNA-sequencing. We obtained 1,620,432 high-quality ESTs from a directional strand-specific cDNA library, resulting in a 26% higher coverage of genome bases than that of the public ESTs available at NCBI. With a 15×-deep coverage of transcribed genomic regions, our data were able to (i) confirm for the first time 990 predictions without previous evidence of transcription; (ii) correct gene predictions; (iii) discover 989 and 1196 RNA-seq contigs that map to intergenic and intronic genomic regions, respectively, where no gene had been predicted before. These contigs could represent new protein-coding genes or non-coding RNAs (ncRNAs). Interestingly, we identified 11 novel Micro-exon genes (MEGs). These data reveal new features of the S. mansoni transcriptional landscape and significantly advance our understanding of the parasite transcriptome.


Asunto(s)
Genes de Helminto/genética , ARN de Helminto/química , Schistosoma mansoni/genética , Transcriptoma , Animales , Mapeo Contig , Exones , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica , Genes Mitocondriales , Genoma de los Helmintos , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Datos de Secuencia Molecular , Schistosoma japonicum/genética , Alineación de Secuencia , Análisis de Secuencia de ARN
20.
Parasitology ; 138(9): 1124-33, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21756422

RESUMEN

Transposons of the Mutator superfamily have been widely described in plants, but only recently have metazoan organisms been shown to harbour them. In this work we describe novel Mutator superfamily transposons from the genomes of the human parasites Schistosoma mansoni and S. japonicum, which we name Curupira-1 and Curupira-2. Curupira elements do not have Terminal Inverted Repeats (TIRs) at their extremities and generate Target Site Duplications (TSDs) of 9 base pairs. Curupira-2 transposons code for a conserved transposase and SWIM zinc finger domains, while Curupira-1 elements comprise these same domains plus a WRKY zinc finger. Alignment of transcript sequences from both elements back to the genomes indicates that they are subject to splicing to produce mature transcripts. Phylogenetic analyses indicate that these transposons represent a new lineage of metazoan Mutator-like elements with characteristics that are distinct from the recently described Phantom elements. Description of these novel schistosome transposons provides new insights in the evolution of transposable elements in schistosomes.


Asunto(s)
Elementos Transponibles de ADN , Genoma de los Helmintos , Retroelementos , Schistosoma japonicum/genética , Schistosoma mansoni/genética , Transcripción Genética , Transposasas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Secuencia Conservada/genética , Evolución Molecular , Humanos , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Empalme del ARN , Esquistosomiasis Japónica/parasitología , Esquistosomiasis mansoni/parasitología , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA