Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G213-G229, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366545

RESUMEN

The endocannabinoid system (ECS) is dysregulated in various liver diseases. Previously, we had shown that the major endocannabinoid 2-arachidonoyl glycerol (2-AG) promoted tumorigenesis of intrahepatic cholangiocarcinoma (ICC). However, biosynthesis regulation and clinical significance of 2-AG remain elusive. In the present study, we quantified 2-AG by gas chromatography/mass spectrometry (GC/MS) and showed that 2-AG was enriched in patients with ICC samples as well as in thioacetamide-induced orthotopic rat ICC model. Moreover, we found that diacylglycerol lipase ß (DAGLß) was the principal synthesizing enzyme of 2-AG that significantly upregulated in ICC. DAGLß promoted tumorigenesis and metastasis of ICC in vitro and in vivo and positively correlated with clinical stage and poor survival in patients with ICC. Functional studies showed that activator protein-1 (AP-1; heterodimers of c-Jun and FRA1) directly bound to the promoter and regulated transcription of DAGLß, which can be enhanced by lipopolysaccharide (LPS). miR-4516 was identified as the tumor-suppressing miRNA of ICC that can be significantly suppressed by LPS, 2-AG, or ectopic DAGLß overexpression. FRA1 and STAT3 were targets of miR-4516 and overexpression of miRNA-4516 significantly suppressed expression of FRA1, SATA3, and DAGLß. Expression of miRNA-4516 was negatively correlated with FRA1, SATA3, and DAGLß in patients with ICC samples. Our findings identify DAGLß as the principal synthesizing enzyme of 2-AG in ICC. DAGLß promotes oncogenesis and metastasis of ICC and is transcriptionally regulated by a novel AP-1/DAGLß/miR4516 feedforward circuitry.NEW & NOTEWORTHY Dysregulated endocannabinoid system (ECS) had been confirmed in various liver diseases. However, regulation and function of 2-arachidonoyl glycerol (2-AG) and diacylglycerol lipase ß (DAGLß) in intrahepatic cholangiocarcinoma (ICC) remain to be elucidated. Here, we demonstrated that 2-AG was enriched in ICC, and DAGLß was the principal synthesizing enzyme of 2-AG in ICC. DAGLß promotes tumorigenesis and metastasis in ICC via a novel activator protein-1 (AP-1)/DAGLß/miR4516 feedforward circuitry.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , MicroARNs , Ratas , Animales , Factor de Transcripción AP-1/genética , Endocannabinoides , Lipoproteína Lipasa , Glicerol , Lipopolisacáridos , Colangiocarcinoma/patología , MicroARNs/genética , MicroARNs/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/metabolismo , Carcinogénesis , Línea Celular Tumoral
2.
Am J Pathol ; 192(3): 484-502, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34896073

RESUMEN

Leptin is an adipokine with roles in food intake and energy metabolism through its actions on neurons in the hypothalamus. The role of leptin in obesity and cardiovascular disorders is well documented. However, its influence on liver conditions such as cholestasis is poorly understood. The effects of exogenous leptin and leptin-neutralizing antibody on biliary hyperplasia, hepatic fibrosis, and inflammation in the multidrug resistance protein 2 knockout (Mdr2KO) mouse model of cholestasis were assessed by quantifying markers specific for cholangiocytes, activated hepatic stellate cells (HSCs), and cytokines. Serum and hepatic leptin were increased in Mdr2KO mice compared with FVB/NJ (FVBN) controls, and exogenous leptin enhanced biliary hyperplasia and liver fibrosis in Mdr2KO and FVBN mice. Leptin administration increased hepatic expression of C-C motif chemokine ligand 2 and IL-6 in Mdr2KO mice. In contrast, leptin-neutralizing antibody reduced intrahepatic bile duct mass and decreased HSC activation in Mdr2KO mice compared with FVBN controls. Sex-related differences were noted, with female Mdr2KO mice having more leptin than males. In cholangiocytes and LX2 cells in vitro, leptin increased phosphorylated Akt and stimulated cell proliferation. Leptin receptor siRNA and inhibitors of Akt phosphorylation impaired leptin-induced cell proliferation and proinflammatory cytokines. The current data suggest that leptin is abnormally increased in cholestatic mice, and excess leptin increases ductular reaction, hepatic fibrosis, and inflammation via leptin receptor-mediated phosphorylation of Akt in cholangiocytes and HSCs.


Asunto(s)
Colestasis , Receptores de Leptina , Animales , Anticuerpos Neutralizantes , Colestasis/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Células Estrelladas Hepáticas/metabolismo , Hiperplasia/patología , Inflamación/patología , Leptina/metabolismo , Leptina/farmacología , Hígado/metabolismo , Cirrosis Hepática/patología , Masculino , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Leptina/metabolismo
3.
Anal Biochem ; 643: 114436, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34715070

RESUMEN

Hepatic encephalopathy describes an array of neurological complications that arise due to liver insufficiency. The pathogenesis of hepatic encephalopathy shares a longstanding association with hyperammonemia and inflammation, and recently, aberrant bile acid signaling has been implicated in the development of key features of hepatic encephalopathy. These key features include neuronal dysfunction, neuroinflammation and blood-brain barrier permeability. This review summarizes the findings of recent studies demonstrating a role for bile acids in the pathogenesis of hepatic encephalopathy via one of three main bile acid receptors and speculates on the possible downstream consequences of aberrant bile acid signaling.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Encefalopatía Hepática/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Encefalopatía Hepática/patología , Humanos
4.
Am J Pathol ; 190(2): 347-357, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31734229

RESUMEN

Severe hepatic insults can lead to acute liver failure and hepatic encephalopathy (HE). Transforming growth factor ß1 (TGFß1) has been shown to contribute to HE during acute liver failure; however, TGFß1 must be activated to bind its receptor and generate downstream effects. One protein that can activate TGFß1 is thrombospondin-1 (TSP-1). Therefore, the aim of this study was to assess TSP-1 during acute liver failure and HE pathogenesis. C57Bl/6 or TSP-1 knockout (TSP-1-/-) mice were injected with azoxymethane (AOM) to induce acute liver failure and HE. Liver damage, neurologic decline, and molecular analyses of TSP-1 and TGFß1 signaling were performed. AOM-treated mice had increased TSP-1 and TGFß1 mRNA and protein expression in the liver. TSP-1-/- mice administered AOM had reduced liver injury as assessed by histology and serum transaminase levels compared with C57Bl/6 AOM-treated mice. TSP-1-/- mice treated with AOM had reduced TGFß1 signaling that was associated with less hepatic cell death as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and cleaved caspase 3 expression. TSP-1-/- AOM-treated mice had a reduced rate of neurologic decline, less cerebral edema, and a decrease in microglia activation in comparison with C57Bl/6 mice treated with AOM. Taken together, TSP-1 is an activator of TGFß1 signaling during AOM-induced acute liver failure and contributes to both liver pathology and HE progression.


Asunto(s)
Modelos Animales de Enfermedad , Encefalopatía Hepática/patología , Fallo Hepático Agudo/patología , Trombospondina 1/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Azoximetano/toxicidad , Carcinógenos/toxicidad , Muerte Celular , Encefalopatía Hepática/etiología , Encefalopatía Hepática/metabolismo , Fallo Hepático Agudo/etiología , Fallo Hepático Agudo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
5.
Am J Pathol ; 190(3): 586-601, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31953035

RESUMEN

Galanin (Gal) is a peptide with a role in neuroendocrine regulation of the liver. In this study, we assessed the role of Gal and its receptors, Gal receptor 1 (GalR1) and Gal receptor 2 (GalR2), in cholangiocyte proliferation and liver fibrosis in multidrug resistance protein 2 knockout (Mdr2KO) mice as a model of chronic hepatic cholestasis. The distribution of Gal, GalR1, and GalR2 in specific liver cell types was assessed by laser-capture microdissection and confocal microscopy. Galanin immunoreactivity was detected in cholangiocytes, hepatic stellate cells (HSCs), and hepatocytes. Cholangiocytes expressed GalR1, whereas HSCs and hepatocytes expressed GalR2. Strategies were used to either stimulate or block GalR1 and GalR2 in FVB/N (wild-type) and Mdr2KO mice and measure biliary hyperplasia and hepatic fibrosis by quantitative PCR and immunostaining of specific markers. Galanin treatment increased cholangiocyte proliferation and fibrogenesis in both FVB/N and Mdr2KO mice. Suppression of GalR1, GalR2, or both receptors in Mdr2KO mice resulted in reduced bile duct mass and hepatic fibrosis. In vitro knockdown of GalR1 in cholangiocytes reduced α-smooth muscle actin expression in LX-2 cells treated with cholangiocyte-conditioned media. A GalR2 antagonist inhibited HSC activation when Gal was administered directly to LX-2 cells, but not via cholangiocyte-conditioned media. These data demonstrate that Gal contributes not only to cholangiocyte proliferation but also to liver fibrogenesis via the coordinate activation of GalR1 in cholangiocytes and GalR2 in HSCs.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Colestasis/metabolismo , Galanina/metabolismo , Cirrosis Hepática/metabolismo , Receptor de Galanina Tipo 1/metabolismo , Receptor de Galanina Tipo 2/metabolismo , Animales , Conductos Biliares/metabolismo , Proliferación Celular , Colestasis/patología , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Femenino , Galanina/genética , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/patología , Ratones , Ratones Noqueados , Receptor de Galanina Tipo 1/genética , Receptor de Galanina Tipo 2/genética , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
6.
Liver Int ; 41(7): 1474-1488, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33900013

RESUMEN

This working group of the International Society of Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) was commissioned to summarize and update current efforts in the development and characterization of animal models of hepatic encephalopathy (HE). As defined in humans, HE in animal models is based on the underlying degree and severity of liver pathology. Although hyperammonemia remains the key focus in the pathogenesis of HE, other factors associated with HE have been identified, together with recommended animal models, to help explore the pathogenesis and pathophysiological mechanisms of HE. While numerous methods to induce liver failure and disease exist, less have been characterized with neurological and neurobehavioural impairments. Moreover, there still remains a paucity of adequate animal models of Type C HE induced by alcohol, viruses and non-alcoholic fatty liver disease; the most common etiologies of chronic liver disease.


Asunto(s)
Encefalopatía Hepática , Hiperamonemia , Hepatopatías , Animales , Modelos Animales de Enfermedad , Encefalopatía Hepática/etiología , Humanos
7.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825239

RESUMEN

Bile acids are commonly known as digestive agents for lipids. The mechanisms of bile acids in the gastrointestinal track during normal physiological conditions as well as hepatic and cholestatic diseases have been well studied. Bile acids additionally serve as ligands for signaling molecules such as nuclear receptor Farnesoid X receptor and membrane-bound receptors, Takeda G-protein-coupled bile acid receptor and sphingosine-1-phosphate receptor 2. Recent studies have shown that bile acid signaling may also have a prevalent role in the central nervous system. Some bile acids, such as tauroursodeoxycholic acid and ursodeoxycholic acid, have shown neuroprotective potential in experimental animal models and clinical studies of many neurological conditions. Alterations in bile acid metabolism have been discovered as potential biomarkers for prognosis tools as well as the expression of various bile acid receptors in multiple neurological ailments. This review explores the findings of recent studies highlighting bile acid-mediated therapies and bile acid-mediated signaling and the roles they play in neurodegenerative and neurological diseases.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Humanos , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Enfermedades de la Retina/metabolismo , Transducción de Señal
8.
J Neuroinflammation ; 16(1): 69, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940161

RESUMEN

BACKGROUND: Acute liver failure resulting from drug-induced liver injury can lead to the development of neurological complications called hepatic encephalopathy (HE). Hepatic transforming growth factor beta 1 (TGFß1) is upregulated due to liver failure in mice and inhibiting circulating TGFß reduced HE progression. However, the specific contributions of TGFß1 on brain cell populations and neuroinflammation during HE are not known. Therefore, the aim of this study was to characterize hepatic and brain TGFß1 signaling during acute liver failure and its contribution to HE progression using a combination of pharmacological and genetic approaches. METHODS: C57Bl/6 or neuron-specific transforming growth factor beta receptor 2 (TGFßR2) null mice (TGFßR2ΔNeu) were treated with azoxymethane (AOM) to induce acute liver failure and HE. The activity of circulating TGFß1 was inhibited in C57Bl/6 mice via injection of a neutralizing antibody against TGFß1 (anti-TGFß1) prior to AOM injection. In all mouse treatment groups, liver damage, neuroinflammation, and neurological deficits were assessed. Inflammatory signaling between neurons and microglia were investigated in in vitro studies through the use of pharmacological inhibitors of TGFß1 signaling in HT-22 and EOC-20 cells. RESULTS: TGFß1 was expressed and upregulated in the liver following AOM injection. Pharmacological inhibition of TGFß1 after AOM injection attenuated neurological decline, microglia activation, and neuroinflammation with no significant changes in liver damage. TGFßR2ΔNeu mice administered AOM showed no effect on liver pathology but significantly reduced neurological decline compared to control mice. Microglia activation and neuroinflammation were attenuated in mice with pharmacological inhibition of TGFß1 or in TGFßR2ΔNeu mice. TGFß1 increased chemokine ligand 2 (CCL2) and decreased C-X3-C motif ligand 1 (CX3CL1) expression in HT-22 cells and reduced interleukin-1 beta (IL-1ß) expression, tumor necrosis factor alpha (TNFα) expression, and phagocytosis activity in EOC-20 cells. CONCLUSION: Increased circulating TGFß1 following acute liver failure results in activation of neuronal TGFßR2 signaling, driving neuroinflammation and neurological decline during AOM-induced HE.


Asunto(s)
Corteza Cerebral/patología , Encefalopatía Hepática/etiología , Fallo Hepático Agudo/complicaciones , Fallo Hepático Agudo/patología , Neuronas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/deficiencia , Factor de Crecimiento Transformador beta1/sangre , Animales , Anticuerpos/uso terapéutico , Azoximetano/toxicidad , Benzamidas/farmacología , Carcinógenos/toxicidad , Línea Celular Transformada , Modelos Animales de Enfermedad , Encefalopatía Hepática/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inflamación/etiología , Isoquinolinas/farmacología , Hígado/metabolismo , Hígado/patología , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Fagocitosis/genética , Pirazoles/farmacología , Piridinas/farmacología , Pirroles/farmacología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/inmunología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
9.
Am J Pathol ; 188(3): 600-615, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29248461

RESUMEN

Feeding a high-fat diet (HFD) coupled with sugar, mimicking a Western diet, causes fatty liver disease in mice. Histamine induces biliary proliferation and fibrosis and regulates leptin signaling. Wild-type (WT) and l-histidine decarboxylase (Hdc-/-) mice were fed a control diet or an HFD coupled with a high fructose corn syrup equivalent. Hematoxylin and eosin and Oil Red O staining were performed to determine steatosis. Biliary mass and cholangiocyte proliferation were evaluated by immunohistochemistry. Senescence and fibrosis were measured by quantitative PCR and immunohistochemistry. Hepatic stellate cell activation was detected by immunofluorescence. Histamine and leptin levels were measured by enzyme immunoassay. Leptin receptor (Ob-R) was evaluated by quantitative PCR. The HDC/histamine/histamine receptor axis, ductular reaction, and biliary senescence were evaluated in patients with nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, or end-stage liver disease. Hdc-/- HFD mice had increased steatosis compared with WT HFD mice. WT HFD mice had increased biliary mass, biliary proliferation, senescence, fibrosis, and hepatic stellate cell activation, which were reduced in Hdc-/- HFD mice. In Hdc-/- HFD mice, serum leptin levels increased, whereas biliary Ob-R expression decreased. Nonalcoholic steatohepatitis patients had increased HDC/histamine/histamine receptor signaling. Hdc-/- HFD mice are susceptible to obesity via dysregulated leptin/Ob-R signaling, whereas the lack of HDC protects from HFD-induced fibrosis and cholangiocyte damage. HDC/histamine/leptin signaling may be important in managing obesity-induced biliary damage.


Asunto(s)
Dieta Alta en Grasa , Histamina/metabolismo , Histidina Descarboxilasa/metabolismo , Leptina/metabolismo , Cirrosis Hepática/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adulto , Anciano , Animales , Femenino , Histidina Descarboxilasa/genética , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal/fisiología
10.
Hepatology ; 68(3): 1042-1056, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29601088

RESUMEN

Primary sclerosing cholangitis (PSC) patients are at risk of developing cholangiocarcinoma (CCA). We have shown that (1) histamine increases biliary hyperplasia through H1/H2 histamine receptors (HRs) and (2) histamine levels increase and mast cells (MCs) infiltrate during PSC and CCA. We examined the effects of chronic treatment with H1/H2HR antagonists on PSC and CCA. Wild-type and multidrug-resistant knockout (Mdr2-/- ) mice were treated by osmotic minipumps with saline, mepyramine, or ranitidine (10 mg/kg body weight/day) or a combination of mepyramine/ranitidine for 4 weeks. Liver damage was assessed by hematoxylin and eosin. We evaluated (1) H1/H2HR expression, (2) MC presence, (3) L-histidine decarboxylase/histamine axis, (4) cholangiocyte proliferation/bile duct mass, and (5) fibrosis/hepatic stellate cell activation. Nu/nu mice were implanted with Mz-ChA-1 cells into the hind flanks and treated with saline, mepyramine, or ranitidine. Tumor growth was measured, and (1) H1/H2HR expression, (2) proliferation, (3) MC activation, (4) angiogenesis, and (5) epithelial-mesenchymal transition (EMT) were evaluated. In vitro, human hepatic stellate cells were evaluated for H1HR and H2HR expression. Cultured cholangiocytes and CCA lines were treated with saline, mepyramine, or ranitidine (25 µM) before evaluating proliferation, angiogenesis, EMT, and potential signaling mechanisms. H1/H2HR and MC presence increased in human PSC and CCA. In H1/H2HR antagonist (alone or in combination)-treated Mdr2-/- mice, liver and biliary damage and fibrosis decreased compared to saline treatment. H1/H2HR antagonists decreased tumor growth, serum histamine, angiogenesis, and EMT. In vitro, H1/H2HR blockers reduced biliary proliferation, and CCA cells had decreased proliferation, angiogenesis, EMT, and migration. Conclusion: Inhibition of H1/H2HR reverses PSC-associated damage and decreases CCA growth, angiogenesis, and EMT; because PSC patients are at risk of developing CCA, using HR blockers may be therapeutic for these diseases. (Hepatology 2018).


Asunto(s)
Colangiocarcinoma/prevención & control , Colangitis Esclerosante/tratamiento farmacológico , Antagonistas de los Receptores Histamínicos H1/uso terapéutico , Antagonistas de los Receptores H2 de la Histamina/uso terapéutico , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Colangiocarcinoma/etiología , Colangitis Esclerosante/complicaciones , Evaluación Preclínica de Medicamentos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células Estrelladas Hepáticas/efectos de los fármacos , Antagonistas de los Receptores Histamínicos H1/farmacología , Antagonistas de los Receptores H2 de la Histamina/farmacología , Humanos , Hígado/efectos de los fármacos , Masculino , Mastocitos/efectos de los fármacos , Ratones , Ratones Noqueados , Neovascularización Patológica/prevención & control , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
11.
Lab Invest ; 98(11): 1465-1477, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30143751

RESUMEN

Ursodeoxycholic acid (UDCA) is used to treat biliary disorders; and, bile acids alter mast cell (MC) histamine release. MCs infiltrate Mdr2-/- mice liver (model of primary sclerosing cholangitis (PSC)). MC-derived histamine increases inflammation, hepatic stellate cell (HSC) activation and fibrosis. The objective was to determine the effects of UDCA treatment on MC infiltration, biliary damage, inflammation and fibrosis in Mdr2-/- mice and human PSC. Wild-type and Mdr2-/- mice were fed bile acid control diet or UDCA (0.5% wt/wt). Human samples were collected from control and PSC patients treated with placebo or UDCA (15 mg/kg/BW). MC infiltration was measured by immunhistochemistry and quantitative polymerase chain reaction (qPCR) for c-Kit, chymase, and tryptase. The HDC/histamine/histamine receptor (HR)-axis was evaluated by EIA and qPCR. Intrahepatic bile duct mass (IBDM) and biliary proliferation was evaluated by CK-19 and Ki-67 staining. Fibrosis was detected by immunostaining and qPCR for fibrotic markers. Inflammatory components were measured by qPCR. HSC activation was measured by SYP-9 staining. Inflammation was detected by qPCR for CD68. In vitro, MCs were treated with UDCA (40 µM) prior to HA secretion evaluation and coculturing with cholangiocytes or HSCs. BrDU incorporation and fibrosis by qPCR was performed. UDCA reduced MC number, the HDC/histamine/HR-axis, IBDM, HSC activation, inflammation, and fibrosis in Mdr2-/- mice and PSC patients. In vitro, UDCA decreases MC-histamine release, which was restored by blocking ASBT and FXRß. Proliferation and fibrosis decreased after treatment with UDCA-treated MCs. We conclude that UDCA acts on MCs reducing histamine levels and decreases the inflammatory/hyperplastic/fibrotic reaction seen in PSC. Ursodeoxycholic acid (UDCA) is used to treat biliary disorders; and, bile acids alter mast cell (MC) histamine release. Following liver injury like primary sclerosing cholangitis in mice and humans, MCs infiltrate. MC-derived histamine increases biliary damage, fibrosis, and inflammation. UDCA treatment decreases these parameters via reduced MC activation.


Asunto(s)
Colagogos y Coleréticos/farmacología , Colangitis Esclerosante/tratamiento farmacológico , Mastocitos/efectos de los fármacos , Ácido Ursodesoxicólico/farmacología , Animales , Estudios de Casos y Controles , Colagogos y Coleréticos/uso terapéutico , Células Estrelladas Hepáticas/efectos de los fármacos , Histamina/metabolismo , Humanos , Hepatopatías/prevención & control , Ratones Noqueados , Ácido Ursodesoxicólico/uso terapéutico
12.
Am J Pathol ; 187(4): 819-830, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28196718

RESUMEN

During the course of cholestatic liver diseases, mitotically dormant cholangiocytes proliferate and subsequently acquire a neuroendocrine phenotype. Galanin is a neuroendocrine factor responsible for regulation of physiological responses, such as feeding behavior and mood, and has been implicated in the development of fatty liver disease, although its role in biliary hyperplasia is unknown. Biliary hyperplasia was induced in rats via bile duct ligation (BDL) surgery, and galanin was increased in serum and liver homogenates from BDL rats. Treatment of sham and BDL rats with recombinant galanin increased cholangiocyte proliferation and intrahepatic biliary mass, liver damage, and inflammation, whereas blocking galanin expression with specific vivo-morpholino sequences inhibited hyperplastic cholangiocyte proliferation, liver damage, inflammation, and subsequent fibrosis. The proliferative effects of galanin were via activation of galanin receptor 1 expressed specifically on cholangiocytes and were associated with an activation of extracellular signal-regulated kinase 1/2, and ribosomal S6 kinase 1 signal transduction pathways and subsequent increase in cAMP responsive element binding protein DNA-binding activity and induction of Yes-associated protein expression. Strategies to inhibit extracellular signal-regulated kinase 1/2, ribosomal S6 kinase 1, or cAMP responsive element binding protein DNA-binding activity prevented the proliferative effects of galanin. Taken together, these data suggest that targeting galanin signaling may be effective for the maintenance of biliary mass during cholestatic liver diseases.


Asunto(s)
Conductos Biliares/patología , Colestasis/metabolismo , Colestasis/patología , Galanina/metabolismo , Regulación hacia Arriba , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Biomarcadores/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , ADN/metabolismo , Inflamación/patología , Ligadura , Masculino , Ratones , Morfolinos/farmacología , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de Galanina/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Proteínas Señalizadoras YAP
13.
Hepatology ; 65(6): 1991-2004, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28120369

RESUMEN

Activated mast cells (MCs) release histamine (HA) and MCs infiltrate the liver following bile duct ligation (BDL), increasing intrahepatic bile duct mass (IBDM) and fibrosis. We evaluated the effects of BDL in MC-deficient (KitW-sh ) mice. Wild-type (WT) and KitW-sh mice were subjected to sham or BDL for up to 7 days and KitW-sh mice were injected with cultured mast cells or 1× phosphate-buffered saline (PBS) before collecting serum, liver, and cholangiocytes. Liver damage was assessed by hematoxylin and eosin and alanine aminotransferase levels. IBDM was detected by cytokeratin-19 expression and proliferation by Ki-67 immunohistochemistry (IHC). Fibrosis was detected by IHC, hydroxyproline content, and by qPCR for fibrotic markers. Hepatic stellate cell (HSC) activation and transforming growth factor-beta 1 (TGF-ß1) expression/secretion were evaluated. Histidine decarboxylase (HDC) and histamine receptor (HR) expression were detected by qPCR and HA secretion by enzymatic immunoassay. To evaluate vascular cells, von Willebrand factor (vWF) and vascular endothelial growth factor (VEGF)-C expression were measured. In vitro, cultured HSCs were stimulated with cholangiocyte supernatants and alpha-smooth muscle actin levels were measured. BDL-induced liver damage was reduced in BDL KitW-sh mice, whereas injection of MCs did not mimic BDL-induced damage. In BDL KitW-sh mice, IBDM, proliferation, HSC activation/fibrosis, and TGF-ß1 expression/secretion were decreased. The HDC/HA/HR axis was ablated in sham and BDL KitW-sh mice. vWF and VEGF-C expression decreased in BDL KitW-sh mice. In KitW-sh mice injected with MCs, IBDM, proliferation, fibrosis, and vascular cell activation increased. Stimulation with cholangiocyte supernatants from BDL WT or KitW-sh mice injected with MCs increased HSC activation, which decreased with supernatants from BDL KitW-sh mice. CONCLUSION: MCs promote hyperplasia, fibrosis, and vascular cell activation. Knockout of MCs decreases BDL-induced damage. Modulation of MCs may be important in developing therapeutics for cholangiopathies. (Hepatology 2017;65:1991-2004).


Asunto(s)
Enfermedades de las Vías Biliares/patología , Cirrosis Hepática/patología , Hígado/lesiones , Mastocitos/trasplante , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis , Conductos Biliares Intrahepáticos/cirugía , Enfermedades de las Vías Biliares/fisiopatología , Biopsia con Aguja , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hiperplasia/patología , Inmunohistoquímica , Ligadura/métodos , Hígado/patología , Masculino , Mastocitos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria , Valores de Referencia
14.
FASEB J ; 31(10): 4305-4324, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28634212

RESUMEN

Melatonin therapy or prolonged exposure to complete darkness reduces biliary hyperplasia and liver fibrosis in bile-duct-ligated (BDL) rats; however, no information exists in primary sclerosing cholangitis (PSC). Thus, we aimed to determine the therapeutic effects of prolonged dark therapy or melatonin administration on hepatic fibrosis in the multidrug resistance gene 2-knockout (Mdr2-/-) mouse model of PSC. Melatonin levels, biliary mass, liver fibrosis, angiogenesis and miR-200b expression were evaluated in wild-type and Mdr2-/- mice exposed to darkness or melatonin treatment or in male patients with PSC and healthy controls. Mdr2-/- mice were also treated with miR-200b inhibitor or control before evaluating biliary mass, liver fibrosis, and angiogenesis. After overexpression of arylalkylamine N-acetyltransferase (AANAT; the enzyme regulating melatonin synthesis) or inhibition of miR-200b in cholangiocytes and hepatic stellate cells in vitro, we evaluated angiogenesis and fibrosis gene expression. After exposure to darkness or administration of melatonin, Mdr2-/- mice show elevated serum melatonin levels and inhibition of biliary mass, along with reduction of liver fibrosis and angiogenesis. MicroRNA PCR analysis demonstrated that miR-200b expression increased in Mdr2-/- mice and patients with PSC compared with controls and decreased in Mdr2-/- mice subjected to dark exposure or melatonin treatment. Inhibition of miR-200b in Mdr2-/- ablates biliary proliferation, liver fibrosis, and angiogenesis. In vitro, overexpression of AANAT or inhibition of miR-200b in cholangiocytes and hepatic stellate cells decreased the expression of miR-200b, angiogenesis, and fibrosis genes. Dark therapy or targeting melatonin/miR-200b axis may be important in the management of biliary damage and liver fibrosis in cholangiopathies including PSC.-Wu, N., Meng, F., Zhou, T., Han, Y., Kennedy, L., Venter, J., Francis, H., DeMorrow, S., Onori, P., Invernizzi, P., Bernuzzi, F., Mancinelli, R., Gaudio, E., Franchitto, A., Glaser, S., Alpini G. Prolonged darkness reduces liver fibrosis in a mouse model of primary sclerosing cholangitis by miR-200b down-regulation.


Asunto(s)
Colangitis Esclerosante/metabolismo , Oscuridad , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Melatonina/metabolismo , MicroARNs/genética , Inductores de la Angiogénesis/metabolismo , Animales , Proliferación Celular/fisiología , Colangitis Esclerosante/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Fibrosis/metabolismo , Masculino , Ratones Transgénicos
15.
Gene Expr ; 18(3): 171-185, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-29895352

RESUMEN

Acute liver failure is a devastating consequence of hepatotoxic liver injury that can lead to the development of hepatic encephalopathy. There is no consensus on the best model to represent these syndromes in mice, and therefore the aim of this study was to classify hepatic and neurological consequences of azoxymethane- and thioacetamide-induced liver injury. Azoxymethane-treated mice were euthanized at time points representing absence of minor and significant stages of neurological decline. Thioacetamide-treated mice had tissue collected at up to 3 days following daily injections. Liver histology, serum chemistry, bile acids, and cytokine levels were measured. Reflexes, grip strength measurement, and ataxia were calculated for all groups. Brain ammonia, bile acid levels, cerebral edema, and neuroinflammation were measured. Finally, in vitro and in vivo assessments of blood-brain barrier function were performed. Serum transaminases and liver histology demonstrate that both models generated hepatotoxic liver injury. Serum proinflammatory cytokine levels were significantly elevated in both models. Azoxymethane-treated mice had progressive neurological deficits, while thioacetamide-treated mice had inconsistent neurological deficits. Bile acids and cerebral edema were increased to a higher degree in azoxymethane-treated mice, while cerebral ammonia and neuroinflammation were greater in thioacetamide-treated mice. Blood-brain barrier permeability exists in both models but was likely not due to direct toxicity of azoxymethane or thioacetamide on brain endothelial cells. In conclusion, both models generate acute liver injury and hepatic encephalopathy, but the requirement of a single injection and the more consistent neurological decline make azoxymethane treatment a better model for acute liver failure with hepatic encephalopathy.


Asunto(s)
Azoximetano/toxicidad , Modelos Animales de Enfermedad , Encefalopatía Hepática/patología , Tioacetamida/toxicidad , Animales , Biomarcadores/sangre , Encéfalo/metabolismo , Encéfalo/patología , Encefalopatía Hepática/etiología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Int J Mol Sci ; 19(4)2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29587417

RESUMEN

The Hypothalamic-Pituitary-adrenal (HPA) axis describes a complex set of positive and negative feedback influences between the hypothalamus, pituitary gland, and adrenal gland.[...].


Asunto(s)
Sistema Hipotálamo-Hipofisario/microbiología , Sistema Hipófiso-Suprarrenal/metabolismo , Corticoesteroides/metabolismo , Hormona Adrenocorticotrópica/sangre , Animales , Hormona Liberadora de Corticotropina/metabolismo , Retroalimentación Fisiológica , Humanos
17.
Lab Invest ; 97(7): 843-853, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28581486

RESUMEN

The Hippo signaling pathway and the Notch signaling pathway are evolutionary conserved signaling cascades that have important roles in embryonic development of many organs. In murine liver, disruption of either pathway impairs intrahepatic bile duct development. Recent studies suggested that the Notch signaling receptor Notch2 is a direct transcriptional target of the Hippo signaling pathway effector YAP, and the Notch signaling is a major mediator of the Hippo signaling in maintaining biliary cell characteristics in adult mice. However, it remains to be determined whether the Hippo signaling pathway functions through the Notch signaling in intrahepatic bile duct development. We found that loss of the Hippo signaling pathway tumor suppressor Nf2 resulted in increased expression levels of the Notch signaling pathway receptor Notch2 in cholangiocytes but not in hepatocytes. When knocking down Notch2 on the background of Nf2 deficiency in mouse livers, the excessive bile duct development induced by Nf2 deficiency was suppressed by heterozygous and homozygous deletion of Notch2 in a dose-dependent manner. These results implicated that Notch signaling is one of the downstream effectors of the Hippo signaling pathway in regulating intrahepatic bile duct development.


Asunto(s)
Conductos Biliares Intrahepáticos/crecimiento & desarrollo , Neurofibromatosis 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Notch2/metabolismo , Animales , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Femenino , Vía de Señalización Hippo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurofibromatosis 2/genética , Proteínas Serina-Treonina Quinasas/genética , Receptor Notch2/genética
18.
Am J Physiol Gastrointest Liver Physiol ; 313(5): G410-G418, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28751425

RESUMEN

Melatonin is a hormone produced by the pineal gland with increased circulating levels shown to inhibit biliary hyperplasia and fibrosis during cholestatic liver injury. Melatonin also has the capability to suppress the release of hypothalamic gonadotropin-releasing hormone (GnRH), a hormone that promotes cholangiocyte proliferation when serum levels are elevated. However, the interplay and contribution of neural melatonin and GnRH to cholangiocyte proliferation and fibrosis in bile duct-ligated (BDL) rats have not been investigated. To test this, cranial levels of melatonin were increased by implanting osmotic minipumps that performed an intracerebroventricular (ICV) infusion of melatonin or saline for 7 days starting at the time of BDL. Hypothalamic GnRH mRNA and cholangiocyte secretion of GnRH and melatonin were assessed. Cholangiocyte proliferation and fibrosis were measured. Primary human hepatic stellate cells (HSCs) were treated with cholangiocyte supernatants, GnRH, or the GnRH receptor antagonist cetrorelix acetate, and cell proliferation and fibrosis gene expression were assessed. Melatonin infusion reduced hypothalamic GnRH mRNA expression and led to decreased GnRH and increased melatonin secretion from cholangiocytes. Infusion of melatonin was found to reduce hepatic injury, cholangiocyte proliferation, and fibrosis during BDL-induced liver injury. HSCs supplemented with BDL cholangiocyte supernatant had increased proliferation, and this increase was reversed when HSCs were supplemented with supernatants from melatonin-infused rats. GnRH stimulated fibrosis gene expression in HSCs, and this was reversed by cetrorelix acetate cotreatment. Increasing bioavailability of melatonin in the brain may improve outcomes during cholestatic liver disease.NEW & NOTEWORTHY We have previously demonstrated that GnRH is expressed in cholangiocytes and promotes their proliferation during cholestasis. In addition, dark therapy, which increases melatonin, reduced cholangiocyte proliferation and fibrosis during cholestasis. This study expands these findings by investigating neural GnRH regulation by melatonin during BDL-induced cholestasis by infusing melatonin into the brain. Melatonin infusion reduced cholangiocyte proliferation and fibrosis, and these effects are due to GNRH receptor 1-dependent paracrine signaling between cholangiocytes and hepatic stellate cells.


Asunto(s)
Conductos Biliares , Colestasis , Hormona Liberadora de Gonadotropina , Cirrosis Hepática , Melatonina , Glándula Pineal/fisiología , Animales , Conductos Biliares/efectos de los fármacos , Conductos Biliares/metabolismo , Conductos Biliares/patología , Proliferación Celular/efectos de los fármacos , Depresores del Sistema Nervioso Central/administración & dosificación , Depresores del Sistema Nervioso Central/sangre , Depresores del Sistema Nervioso Central/metabolismo , Colestasis/complicaciones , Colestasis/metabolismo , Modelos Animales de Enfermedad , Hormona Liberadora de Gonadotropina/análogos & derivados , Hormona Liberadora de Gonadotropina/antagonistas & inhibidores , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Antagonistas de Hormonas/farmacología , Humanos , Hiperplasia , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Melatonina/administración & dosificación , Melatonina/sangre , Melatonina/metabolismo , Ratas , Receptores LHRH/antagonistas & inhibidores
19.
Am J Pathol ; 186(2): 312-23, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26683664

RESUMEN

Hepatic encephalopathy is a serious neurological complication of liver failure. Serum bile acids are elevated after liver damage and may disrupt the blood-brain barrier and enter the brain. Our aim was to assess the role of serum bile acids in the neurological complications after acute liver failure. C57Bl/6 or cytochrome p450 7A1 knockout (Cyp7A1(-/-)) mice were fed a control, cholestyramine-containing, or bile acid-containing diet before azoxymethane (AOM)-induced acute liver failure. In parallel, mice were given an intracerebroventricular infusion of farnesoid X receptor (FXR) Vivo-morpholino before AOM injection. Liver damage, neurological decline, and molecular analyses of bile acid signaling were performed. Total bile acid levels were increased in the cortex of AOM-treated mice. Reducing serum bile acids via cholestyramine feeding or using Cyp7A1(-/-) mice reduced bile acid levels and delayed AOM-induced neurological decline, whereas cholic acid or deoxycholic acid feeding worsened AOM-induced neurological decline. The expression of bile acid signaling machinery apical sodium-dependent bile acid transporter, FXR, and small heterodimer partner increased in the frontal cortex, and blocking FXR signaling delayed AOM-induced neurological decline. In conclusion, circulating bile acids may play a pathological role during hepatic encephalopathy, although precisely how they dysregulate normal brain function is unknown. Strategies to minimize serum bile acid concentrations may reduce the severity of neurological complications associated with liver failure.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Enfermedades del Sistema Nervioso Central/etiología , Fallo Hepático Agudo/metabolismo , Transducción de Señal/fisiología , Animales , Barrera Hematoencefálica/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Ácido Cólico/metabolismo , Modelos Animales de Enfermedad , Fallo Hepático Agudo/complicaciones , Fallo Hepático Agudo/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transducción de Señal/genética , Simportadores/genética , Simportadores/metabolismo
20.
Am J Pathol ; 186(1): 123-33, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26597881

RESUMEN

The tumor microenvironment of cholangiocarcinoma (CCA) is composed of numerous cells, including mast cells (MCs). MCs release histamine, which increases CCA progression and angiogenesis. Cholangiocytes secrete stem cell factor, which functions via the MC growth factor receptor c-Kit. Here, we show that cholangiocytes express histidine decarboxylase and its inhibition reduces CCA growth. MC recruitment in the tumor microenvironment increased CCA growth. MC infiltration and MC markers were detected by toluidine blue staining and real-time PCR in human biopsies and in tumors from athymic mice treated with saline, histamine, histidine decarboxylase inhibitor, or cromolyn sodium. Tumor growth, angiogenesis, and epithelial-mesenchymal transition (EMT)/extracellular matrix (ECM) markers were measured in mice treated with cromolyn sodium. In vitro, human CCA cells were treated with MC supernatant fluids before evaluating angiogenesis and EMT/ECM expression. Migration assays were performed with CCA cells treated with the stem cell factor inhibitor. MC supernatant fluids increased CCA histidine decarboxylase, vascular endothelial growth factor, and MC/EMT/ECM expression that decreased with pretreatment of cromolyn sodium. MCs were found in human biopsies. In mice treated with cromolyn sodium, MC infiltration and tumor growth decreased. Inhibition of CCA stem cell factor blocked MC migration and MC/EMT/ECM in CCA. MCs migrate into CCA tumor microenvironment via c-Kit/stem cell factor and increase tumor progression, angiogenesis, EMT switch, and ECM degradation.


Asunto(s)
Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/patología , Histamina/metabolismo , Mastocitos/metabolismo , Microambiente Tumoral/inmunología , Animales , Neoplasias de los Conductos Biliares/inmunología , Diferenciación Celular/inmunología , Proliferación Celular , Colangiocarcinoma/inmunología , Transición Epitelial-Mesenquimal/inmunología , Técnica del Anticuerpo Fluorescente , Xenoinjertos , Humanos , Inmunohistoquímica , Mastocitos/citología , Ratones , Ratones Desnudos , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , Factor de Células Madre/metabolismo , Análisis de Matrices Tisulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA