Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Enzyme Inhib Med Chem ; 34(1): 438-450, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30734609

RESUMEN

Ribonucleotide reductase (RR) catalyses the rate-limiting step of dNTP synthesis, establishing it as an important cancer target. While RR is traditionally inhibited by nucleoside-based antimetabolites, we recently discovered a naphthyl salicyl acyl hydrazone-based inhibitor (NSAH) that binds reversibly to the catalytic site (C-site). Here we report the synthesis and in vitro evaluation of 13 distinct compounds (TP1-13) with improved binding to hRR over NSAH (TP8), with lower KD's and more predicted residue interactions. Moreover, TP6 displayed the greatest growth inhibiting effect in the Panc1 pancreatic cancer cell line with an IC50 of 0.393 µM. This represents more than a 2-fold improvement over NSAH, making TP6 the most potent compound against pancreatic cancer emerging from the hydrazone inhibitors. NSAH was optimised by the addition of cyclic and polar groups replacing the naphthyl moiety, which occupies the phosphate-binding pocket in the C-site, establishing a new direction in inhibitor design.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Ribonucleótido Reductasas/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Ribonucleótido Reductasas/metabolismo , Relación Estructura-Actividad
2.
Biochemistry ; 55(41): 5884-5896, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27634056

RESUMEN

Class I ribonucleotide reductase (RR) maintains balanced pools of deoxyribonucleotide substrates for DNA replication by converting ribonucleoside diphosphates (NDPs) to 2'-deoxyribonucleoside diphosphates (dNDPs). Binding of deoxynucleoside triphosphate (dNTP) effectors (ATP/dATP, dGTP, and dTTP) modulates the specificity of class I RR for CDP, UDP, ADP, and GDP substrates. Crystal structures of bacterial and eukaryotic RRs show that dNTP effectors and NDP substrates bind on either side of a flexible nine-amino acid loop (loop 2). Interactions with the effector nucleobase alter loop 2 geometry, resulting in changes in specificity among the four NDP substrates of RR. However, the functional groups proposed to drive specificity remain untested. Here, we use deoxynucleoside analogue triphosphates to determine the nucleobase functional groups that drive human RR (hRR) specificity. The results demonstrate that the 5-methyl, O4, and N3 groups of dTTP contribute to specificity for GDP. The O6 and protonated N1 of dGTP direct specificity for ADP. In contrast, the unprotonated N1 of adenosine is the primary determinant of ATP/dATP-directed specificity for CDP. Structural models from X-ray crystallography of eukaryotic RR suggest that the side chain of D287 in loop 2 is involved in binding of dGTP and dTTP, but not dATP/ATP. This feature is consistent with experimental results showing that a D287A mutant of hRR is deficient in allosteric regulation by dGTP and dTTP, but not ATP/dATP. Together, these data define the effector functional groups that are the drivers of human RR specificity and provide constraints for evaluating models of allosteric regulation.


Asunto(s)
Nucleósidos/metabolismo , Ribonucleótido Reductasas/metabolismo , Regulación Alostérica , Cristalografía por Rayos X , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Nucleósidos/química , Conformación Proteica , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/genética , Especificidad por Sustrato
3.
Int J Biol Macromol ; 244: 125328, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37307967

RESUMEN

Diabetes is a major public health problem due to morbidity and mortality associated with end organ complications. Uptake of fatty acids by Fatty Acid Transport Protein-2 (FATP2) contributes to hyperglycemia, diabetic kidney and liver disease pathogenesis. Because FATP2 structure is unknown, a homology model was constructed, validated by AlphaFold2 prediction and site-directed mutagenesis, and then used to conduct a virtual drug discovery screen. In silico similarity searches to two low-micromolar IC50 FATP2 inhibitors, followed by docking and pharmacokinetics predictions, narrowed a diverse 800,000 compound library to 23 hits. These candidates were further evaluated for inhibition of FATP2-dependent fatty acid uptake and apoptosis in cells. Two compounds demonstrated nanomolar IC50, and were further characterized by molecular dynamic simulations. The results highlight the feasibility of combining a homology model with in silico and in vitro screening, to economically identify high affinity inhibitors of FATP2, as potential treatment for diabetes and its complications.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Humanos , Ácidos Grasos , Descubrimiento de Drogas , Transporte Biológico , Proteínas de Transporte de Ácidos Grasos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
4.
Biomolecules ; 12(6)2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35740940

RESUMEN

Ribonucleotide reductase (RR) is an essential multi-subunit enzyme found in all living organisms; it catalyzes the rate-limiting step in dNTP synthesis, namely, the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates. As expression levels of human RR (hRR) are high during cell replication, hRR has long been considered an attractive drug target for a range of proliferative diseases, including cancer. While there are many excellent reviews regarding the structure, function, and clinical importance of hRR, recent years have seen an increase in novel approaches to inhibiting hRR that merit an updated discussion of the existing inhibitors and strategies to target this enzyme. In this review, we discuss the mechanisms and clinical applications of classic nucleoside analog inhibitors of hRRM1 (large catalytic subunit), including gemcitabine and clofarabine, as well as inhibitors of the hRRM2 (free radical housing small subunit), including triapine and hydroxyurea. Additionally, we discuss novel approaches to targeting RR and the discovery of new classes of hRR inhibitors.


Asunto(s)
Neoplasias , Ribonucleótido Reductasas , Dominio Catalítico , Difosfatos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Ribonucleótido Reductasas/metabolismo
5.
ACS Catal ; 11(9): 5873-5884, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34055457

RESUMEN

Acid-base catalysis, which involves one or more proton transfer reactions, is a chemical mechanism commonly employed by many enzymes. The molecular basis for catalysis is often derived from structures determined at the optimal pH for enzyme activity. However, direct observation of protons from experimental structures is quite difficult; thus, a complete mechanistic description for most enzymes remains lacking. Dihydrofolate reductase (DHFR) exemplifies general acid-base catalysis, requiring hydride transfer and protonation of its substrate, DHF, to form the product, tetrahydrofolate (THF). Previous X-ray and neutron crystal structures coupled with theoretical calculations have proposed that solvent mediates the protonation step. However, visualization of a proton transfer has been elusive. Based on a 2.1 Å resolution neutron structure of a pseudo-Michaelis complex of E. coli DHFR determined at acidic pH, we report the direct observation of the catalytic proton and its parent solvent molecule. Comparison of X-ray and neutron structures elucidated at acidic and neutral pH reveals dampened dynamics at acidic pH, even for the regulatory Met20 loop. Guided by the structures and calculations, we propose a mechanism where dynamics are crucial for solvent entry and protonation of substrate. This mechanism invokes the release of a sole proton from a hydronium (H3O+) ion, its pathway through a narrow channel that sterically hinders the passage of water, and the ultimate protonation of DHF at the N5 atom.

6.
J Struct Biol ; 166(2): 162-71, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19374017

RESUMEN

For reasons of bioterrorism and drug resistance, it is imperative to identify and develop new molecular points of intervention against anthrax. Dihydrofolate reductase (DHFR) is a highly conserved enzyme and an established target in a number of species for a variety of chemotherapeutic programs. Recently, the crystal structure of Bacillus anthracis DHFR (baDHFR) in complex with methotrexate (MTX) was determined and, based on the structure, proposals were made for drug design strategies directed against the substrate-binding site. However, little is gleaned about the binding site for NADPH, the cofactor responsible for hydride transfer in the catalytic mechanism. In the present study, X-ray crystallography at 100 K was used to determine the structure of baDHFR in complex with MTX and NADPH. Although the NADPH binding mode is nearly identical to that seen in other DHFR ternary complex structures, the adenine moiety adopts an off-plane tilt of nearly 90 degrees and this orientation is stabilized by hydrogen bonds to functionally conserved Arg residues. A comparison of the binding site, focusing on this region, between baDHFR and the human enzyme is discussed, with an aim at designing species-selective therapeutics. Indeed, the ternary model, refined to 2.3 A resolution, provides an accurate template for testing the feasibility of identifying dual-site inhibitors, compounds that target both the substrate and cofactor-binding site. With the ternary model in hand, using in silico methods, several compounds were identified which could potentially form key bonding contacts in the substrate and cofactor-binding sites. Ultimately, two structurally distinct compounds were verified that inhibit baDHFR at low microM concentrations. The apparent Kd for one of these, (2-(3-(2-(hydroxyimino)-2-(pyridine-4-yl)-6,7-dimethylquinoxalin-2-yl)-1-(pyridine-4-yl)ethanone oxime), was measured by fluorescence spectroscopy to be 5.3 microM.


Asunto(s)
Bacillus anthracis/enzimología , Metotrexato/química , NADP/química , Tetrahidrofolato Deshidrogenasa/química , Cristalografía por Rayos X , Diseño de Fármacos , Modelos Moleculares , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia
7.
J Med Chem ; 61(3): 666-680, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29253340

RESUMEN

Ribonucleotide reductase (RR), an established cancer target, is usually inhibited by antimetabolites, which display multiple cross-reactive effects. Recently, we discovered a naphthyl salicyl acyl hydrazone-based inhibitor (NSAH or E-3a) of human RR (hRR) binding at the catalytic site (C-site) and inhibiting hRR reversibly. We herein report the synthesis and biochemical characterization of 25 distinct analogs. We designed each analog through docking to the C-site of hRR based on our 2.7 Å X-ray crystal structure (PDB ID: 5TUS). Broad tolerance to minor structural variations preserving inhibitory potency is observed. E-3f (82% yield) displayed an in vitro IC50 of 5.3 ± 1.8 µM against hRR, making it the most potent in this series. Kinetic assays reveal that E-3a, E-3c, E-3t, and E-3w bind and inhibit hRR through a reversible and competitive mode. Target selectivity toward the R1 subunit of hRR is established, providing a novel way of inhibition of this crucial enzyme.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Hidrazonas/síntesis química , Hidrazonas/farmacología , Ribonucleótido Reductasas/antagonistas & inhibidores , Técnicas de Química Sintética , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Hidrazonas/química , Simulación del Acoplamiento Molecular , Conformación Proteica , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Relación Estructura-Actividad
8.
J Med Chem ; 50(18): 4374-81, 2007 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-17696333

RESUMEN

Spores of Bacillus anthracis are the infectious agent of anthrax. Current antibiotic treatments are limited due to resistance and patient age restrictions; thus, additional targets for therapeutic intervention are needed. One possible candidate is dihydrofolate reductase (DHFR), a biosynthetic enzyme necessary for anthrax pathogenicity. We determined the crystal structure of DHFR from B. anthracis (baDHFR) in complex with methotrexate (MTX; 1) at 2.4 Angstrom resolution. The structure reveals the crucial interactions required for MTX binding and a putative molecular basis for how baDHFR has natural resistance to trimethoprim (TMP; 2). The structure also allows insights for designing selective baDHFR inhibitors that will have weak affinities for the human enzyme. Additionally, we have found that 5-nitro-6-methylamino-isocytosine (MANIC; 3), which inhibits another B. anthracis folate synthesis enzyme, dihydropteroate synthase (DHPS), can also inhibit baDHFR. This provides a starting point for designing multi-target inhibitors that are less likely to induce drug resistance.


Asunto(s)
Bacillus anthracis/enzimología , Proteínas Bacterianas/química , Modelos Moleculares , Tetrahidrofolato Deshidrogenasa/química , Secuencia de Aminoácidos , Antiinflamatorios no Esteroideos/química , Antineoplásicos/química , Sitios de Unión , Cristalografía por Rayos X , Citosina/análogos & derivados , Citosina/química , Humanos , Metotrexato/química , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Resistencia al Trimetoprim
9.
FEBS Lett ; 590(12): 1704-12, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27155231

RESUMEN

Sml1 is an intrinsically disordered protein inhibitor of Saccharomyces cerevisiae ribonucleotide reductase (ScRR1), but its inhibition mechanism is poorly understood. RR reduces ribonucleoside diphosphates to their deoxy forms, and balances the nucleotide pool. Multiple turnover kinetics show that Sml1 inhibition of dGTP/ADP- and ATP/CDP-bound ScRR follows a mixed inhibition mechanism. However, Sml1 cooperatively binds to the ES complex in the dGTP/ADP form, whereas with ATP/CDP, Sml1 binds weakly and noncooperatively. Gel filtration and mutagenesis studies indicate that Sml1 does not alter the oligomerization equilibrium and the CXXC motif is not involved in the inhibition. The data suggest that Sml1 is an allosteric inhibitor.


Asunto(s)
Ribonucleótido Reductasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Regulación Alostérica/fisiología , Secuencias de Aminoácidos , Unión Proteica/fisiología , Multimerización de Proteína/fisiología , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Prog Mol Biol Transl Sci ; 117: 389-410, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23663976

RESUMEN

Ribonucleotide reductases (RRs) catalyze a crucial step of de novo DNA synthesis by converting ribonucleoside diphosphates to deoxyribonucleoside diphosphates. Tight control of the dNTP pool is essential for cellular homeostasis. The activity of the enzyme is tightly regulated at the S-phase by allosteric regulation. Recent structural studies by our group and others provided the molecular basis for understanding how RR recognizes substrates, how it interacts with chemotherapeutic agents, and how it is regulated by its allosteric regulators ATP and dATP. This review discusses the molecular basis of allosteric regulation and substrate recognition of RR, and particularly the discovery that subunit oligomerization is an important prerequisite step in enzyme inhibition.


Asunto(s)
Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Regulación Alostérica , Sitio Alostérico , Animales , Humanos , Terapia Molecular Dirigida , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad
11.
Pharmaceuticals (Basel) ; 4(10): 1328-1354, 2011 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-23115527

RESUMEN

Ribonucleotide reductase (RR) is a crucial enzyme in de novo DNA synthesis, where it catalyses the rate determining step of dNTP synthesis. RRs consist of a large subunit called RR1 (α), that contains two allosteric sites and one catalytic site, and a small subunit called RR2 (ß), which houses a tyrosyl free radical essential for initiating catalysis. The active form of mammalian RR is an α(n)ß(m) hetero oligomer. RR inhibitors are cytotoxic to proliferating cancer cells. In this brief review we will discuss the three classes of RR, the catalytic mechanism of RR, the regulation of the dNTP pool, the substrate selection, the allosteric activation, inactivation by ATP and dATP, and the nucleoside drugs that target RR. We will also discuss possible strategies for developing a new class of drugs that disrupts the RR assembly.

12.
Acta Crystallogr D Biol Crystallogr ; D64(Pt 7): 764-83, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18566512

RESUMEN

The hydrogen/deuterium-exchange (HDX) method, coupled with neutron diffraction, is a powerful probe for investigating molecular dynamics. In the present report, general determinants of HDX are proposed based on 12 deposited neutron protein structures. The parameters that correlate best with HDX are the depth within the protein structure of the amide N atom and the secondary-structure type. Both the B factor of the amide N atom and the ratio B/B correlate moderately. However, solvent accessibility only correlates strongly for one molecule and hydrogen-bonding distance correlates for two molecules with respect to amide HDX. In addition to the relatively small number of neutron structures available, the limitations to this type of analysis, namely resolution, data completeness and the data-to-parameter ratio, are discussed briefly. A global analysis of HDX was performed to overcome some of these obstacles, damping the effects of outliers and the extreme variation of the data sets arising from resolution limitations. From this, amide depth and hydrogen-bonding distance to the amide (a measure of interaction strength) show strong global correlation with HDX. For some structures, the constituents of the hydrophobic protein core could be identified based on contiguous regions that are resistant to exchange and have significant depth. These may, in fact, constitute minimal folding domains.


Asunto(s)
Amidas/química , Difracción de Neutrones , Proteínas/química , Medición de Intercambio de Deuterio , Enlace de Hidrógeno , Modelos Moleculares , Estructura Secundaria de Proteína , Solventes/química
13.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 5): 574-9, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15858267

RESUMEN

The contribution of H atoms in noncovalent interactions and enzymatic reactions underlies virtually all aspects of biology at the molecular level, yet their 'visualization' is quite difficult. To better understand the catalytic mechanism of Escherichia coli dihydrofolate reductase (ecDHFR), a neutron diffraction study is under way to directly determine the accurate positions of H atoms within its active site. Despite exhaustive investigation of the catalytic mechanism of DHFR, controversy persists over the exact pathway associated with proton donation in reduction of the substrate, dihydrofolate. As the initial step in a proof-of-principle experiment which will identify ligand and residue protonation states as well as precise solvent structures, a neutron diffraction data set has been collected on a 0.3 mm(3) D(2)O-soaked crystal of ecDHFR bound to the anticancer drug methotrexate (MTX) using the LADI instrument at ILL. The completeness in individual resolution shells dropped to below 50% between 3.11 and 3.48 A and the I/sigma(I) in individual shells dropped to below 2 at around 2.46 A. However, reflections with I/sigma(I) greater than 2 were observed beyond these limits (as far out as 2.2 A). To our knowledge, these crystals possess one of the largest primitive unit cells (P6(1), a = b = 92, c = 73 A) and one of the smallest crystal volumes so far tested successfully with neutrons.


Asunto(s)
Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/metabolismo , Escherichia coli/enzimología , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/metabolismo , Metotrexato/química , Metotrexato/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Cristalización , Óxido de Deuterio/química , Hidrógeno/química , Difracción de Neutrones , Plásmidos/genética , Unión Proteica
14.
Biochemistry ; 43(26): 8568-78, 2004 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-15222768

RESUMEN

Sml1p is a small 104-amino acid protein from Saccharomyces cerevisiae that binds to the large subunit (Rnr1p) of the ribonucleotide reductase complex (RNR) and inhibits its activity. During DNA damage, S phase, or both, RNR activity must be tightly regulated, since failure to control the cellular level of dNTP pools may lead to genetic abnormalities, such as genome rearrangements, or even cell death. Structural characterization of Sml1p is an important step in understanding the regulation of RNR. Until now the oligomeric state of Sml1p was unknown. Mass spectrometric analysis of wild-type Sml1p revealed an intermolecular disulfide bond involving the cysteine residue at position 14 of the primary sequence. To determine whether disulfide bonding is essential for Sml1p oligomerization, we mutated the Cys14 to serine. Sedimentation equilibrium measurements in the analytical ultracentrifuge show that both wild-type and C14S Sml1p exist as dimers in solution, indicating that the dimerization is not a result of a disulfide bond. Further studies of several truncated Sml1p mutants revealed that the N-terminal 8-20 residues are responsible for dimerization. Unfolding/refolding studies of wild-type and C14S Sml1p reveal that both proteins refold reversibly and have almost identical unfolding/refolding profiles. It appears that Sml1p is a two-domain protein where the N-terminus is responsible for dimerization and the C-terminus for binding and inhibiting Rnr1p activity.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Fenómenos Biofísicos , Biofisica , Dicroismo Circular , Clonación Molecular , Cisteína/química , Dimerización , Disulfuros , Relación Dosis-Respuesta a Droga , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Modelos Moleculares , Modelos Estadísticos , Datos de Secuencia Molecular , Desnaturalización Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA