Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Lett ; 39(7): 2012-5, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24686662

RESUMEN

We report on the implementation of an optical tweezer system for controlled transport of ultracold atoms along a narrow, static confinement channel. The tweezer system is based on high-efficiency acousto-optic deflectors and offers two-dimensional control over beam position. This opens up the possibility for tracking the transport channel when shuttling atomic clouds along it, forestalling atom spilling. Multiple clouds can be tracked independently by time-shared tweezer beams addressing individual sites in the channel. The deflectors are controlled using a multichannel direct digital synthesizer, which receives instructions on a submicrosecond time scale from a field-programmable gate array. Using the tweezer system, we demonstrate sequential binary splitting of an ultracold 87Rb cloud into 2(5) clouds.

2.
Opt Lett ; 37(6): 1085-7, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22446233

RESUMEN

We present our first results on our implementation of a laser based accelerator for ultracold atoms. Atoms cooled to a temperature of 420 nK are confined and accelerated by means of laser tweezer beams, and the atomic scattering is directly observed in laser absorption imaging. The optical collider has been characterized using 87Rb atoms in the |F=2, m(F)=2] state, but the scheme is not restricted to atoms in any particular magnetic substates and can readily be extended to other atomic species as well.

3.
Phys Rev Lett ; 103(17): 170404, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19905736

RESUMEN

We propose a method of using off-resonant light scattering to measure the temperature of fermionic atoms tightly confined in a two-dimensional optical-lattice potential. We show that fluctuations of the intensity in the far-field diffraction pattern arising from thermal correlations of the atoms can be accurately detected above the shot noise by collecting photons scattered in a forward direction, with the diffraction maxima blocked. The sensitivity of this method of thermometry is enhanced by an additional harmonic trapping potential.

4.
Rev Sci Instrum ; 89(10): 103105, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399738

RESUMEN

We present a three-dimensional steerable optical tweezer system based on two pairs of acousto-optic deflectors. Radio frequency signals used to steer the optical tweezers are generated by direct digital synthesis, and multiple time averaged cross beam dipole traps can be produced through rapid frequency toggling. We produce arrays of ultracold atomic clouds in both horizontal and vertical planes and use this to demonstrate the three-dimensional nature of this optical tweezer system.

5.
Nat Commun ; 7: 12069, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27396294

RESUMEN

The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions, this requirement strictly prohibits scattering into 90° angles. Here we experimentally investigate the collisions of ultracold clouds fermionic (40)K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90° yield. Above this threshold, effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for (40)K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, whereas the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA