Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Neuropathol ; 145(6): 793-814, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37000196

RESUMEN

Neuronal TDP-43-positive inclusions are neuropathological hallmark lesions in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Pathogenic missense variants in TARDBP, the gene encoding TDP-43, can cause ALS and cluster in the C-terminal prion-like domain (PrLD), where they modulate the liquid condensation and aggregation properties of the protein. TDP-43-positive inclusions are also found in rimmed vacuole myopathies, including sporadic inclusion body myositis, but myopathy-causing TDP-43 variants have not been reported. Using genome-wide linkage analysis and whole exome sequencing in an extended five-generation family with an autosomal dominant rimmed vacuole myopathy, we identified a conclusively linked frameshift mutation in TDP-43 producing a C-terminally altered PrLD (TDP-43p.Trp385IlefsTer10) (maximum multipoint LOD-score 3.61). Patient-derived muscle biopsies showed TDP-43-positive sarcoplasmic inclusions, accumulation of autophagosomes and transcriptomes with abnormally spliced sarcomeric genes (including TTN and NEB) and increased expression of muscle regeneration genes. In vitro phase separation assays demonstrated that TDP-43Trp385IlefsTer10 does not form liquid-like condensates and readily forms solid-like fibrils indicating increased aggregation propensity compared to wild-type TDP-43. In Drosophila TDP-43p.Trp385IlefsTer10 behaved as a partial loss-of-function allele as it was able to rescue the TBPH (fly ortholog of TARDBP) neurodevelopmental lethal null phenotype while showing strongly reduced toxic gain-of-function properties upon overexpression. Accordingly, TDP-43p.Trp385IlefsTer10 showed reduced toxicity in a primary rat neuron disease model. Together, these genetic, pathological, in vitro and in vivo results demonstrate that TDP-43p.Trp385IlefsTer10 is an aggregation-prone partial loss-of-function variant that causes autosomal dominant vacuolar myopathy but not ALS/FTD. Our study genetically links TDP-43 proteinopathy to myodegeneration, and reveals a tissue-specific role of the PrLD in directing pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Pick , Animales , Ratas , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación del Sistema de Lectura , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Mutación , Humanos
2.
Neurol Genet ; 9(3): e200071, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37152446

RESUMEN

Background and Objectives: Owing to their extensive clinical and molecular heterogeneity, hereditary neurologic diseases in adults are difficult to diagnose. The current knowledge about the diagnostic yield and clinical utility of exome sequencing (ES) for neurologic diseases in adults is limited. This observational study assesses the diagnostic value of ES and multigene panel analysis in adult-onset neurologic disorders. Methods: From January 2019 through April 2022, ES-based multigene panel testing was conducted in 1,411 patients with molecularly unexplained neurologic phenotypes at the Ghent University Hospital. Gene panels were developed for ataxia and spasticity, leukoencephalopathy, movement disorders, paroxysmal episodic disorders, neurodegeneration with brain iron accumulation, progressive myoclonic epilepsy, and amyotrophic lateral sclerosis. Single nucleotide variants, small indels, and copy number variants were analyzed. Across all panels, our analysis covered a total of 725 genes associated with Mendelian inheritance. Results: A molecular diagnosis was established in 10% of the cases (144 of 1,411) representing 71 different monogenic disorders. The diagnostic yield depended significantly on the presenting phenotype with the highest yield seen in patients with ataxia or spastic paraparesis (19%). Most of the established diagnoses comprised disorders with an autosomal dominant inheritance (62%), and the most frequently mutated genes were NOTCH3 (13 patients), SPG7 (11 patients), and RFC1 (8 patients). 34% of the disease-causing variants were novel, including a unique likely pathogenic variant in APP (Ghent mutation, p.[Asn698Asp]) in a family presenting with stroke and severe cerebral white matter disease. 7% of the pathogenic variants comprised copy number variants detected in the ES data and confirmed by an independent technique. Discussion: ES and multigene panel testing is a powerful and efficient tool to diagnose patients with unexplained, adult-onset neurologic disorders.

3.
Nat Genet ; 55(11): 1929-1940, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37919452

RESUMEN

Phospholipase A/acyltransferase 3 (PLAAT3) is a phospholipid-modifying enzyme predominantly expressed in neural and white adipose tissue (WAT). It is a potential drug target for metabolic syndrome, as Plaat3 deficiency in mice protects against diet-induced obesity. We identified seven patients from four unrelated consanguineous families, with homozygous loss-of-function variants in PLAAT3, who presented with a lipodystrophy syndrome with loss of fat varying from partial to generalized and associated with metabolic complications, as well as variable neurological features including demyelinating neuropathy and intellectual disability. Multi-omics analysis of mouse Plaat3-/- and patient-derived WAT showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in the signaling of peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipocyte differentiation. Accordingly, CRISPR-Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte differentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ. These findings establish PLAAT3 deficiency as a hereditary lipodystrophy syndrome with neurological manifestations, caused by a PPARγ-dependent defect in WAT differentiation and function.


Asunto(s)
Lipodistrofia , PPAR gamma , Humanos , Animales , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Adipocitos , Adipogénesis/genética , Lipodistrofia/genética , Lipodistrofia/metabolismo , Fosfolipasas
4.
Orphanet J Rare Dis ; 17(1): 210, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606766

RESUMEN

BACKGROUND: In order to facilitate the diagnostic process for adult patients suffering from a rare disease, the Undiagnosed Disease Program (UD-PrOZA) was founded in 2015 at the Ghent University Hospital in Belgium. In this study we report the five-year results of our multidisciplinary approach in rare disease diagnostics. METHODS: Patients referred by a healthcare provider, in which an underlying rare disease is likely, qualify for a UD-PrOZA evaluation. UD-PrOZA uses a multidisciplinary clinical approach combined with state-of-the-art genomic technologies in close collaboration with research facilities to diagnose patients. RESULTS: Between 2015 and 2020, 692 patients (94% adults) were referred of which 329 (48%) were accepted for evaluation. In 18% (60 of 329) of the cases a definite diagnosis was made. 88% (53 of 60) of the established diagnoses had a genetic origin. 65% (39 of 60) of the genetic diagnoses were made through whole exome sequencing (WES). The mean time interval between symptom-onset and diagnosis was 19 years. Key observations included novel genotype-phenotype correlations, new variants in known disease genes and the identification of three new disease genes. In 13% (7 of 53), identifying the molecular cause was associated with therapeutic recommendations and in 88% (53 of 60), gene specific genetic counseling was made possible. Actionable secondary findings were reported in 7% (12 of 177) of the patients in which WES was performed. CONCLUSION: UD-PrOZA offers an innovative interdisciplinary platform to diagnose rare diseases in adults with previously unexplained medical problems and to facilitate translational research.


Asunto(s)
Enfermedades Raras , Enfermedades no Diagnosticadas , Exoma , Genómica , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA