Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 89: 87-99, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32505715

RESUMEN

Benzene is a well-known human carcinogen that is one of the major components of air pollution. Sources of benzene in ambient air include cigarette smoke, e-cigarettes vaping, and evaporation of benzene containing petrol processes. While the carcinogenic effects of benzene exposure have been well studied, less is known about the metabolic effects of benzene exposure. We show that chronic exposure to benzene at low levels induces a severe metabolic imbalance in a sex-specific manner, and is associated with hypothalamic inflammation and endoplasmic reticulum (ER) stress. Benzene exposure rapidly activates hypothalamic ER stress and neuroinflammatory responses in male mice, while pharmacological inhibition of ER stress response by inhibiting IRE1α-XBP1 pathway significantly alleviates benzene-induced glial inflammatory responses. Additionally, feeding mice with Acarbose, a clinically available anti-diabetes drug, protected against benzene induced central and peripheral metabolic imbalance. Acarbose imitates the slowing of dietary carbohydrate digestion, suggesting that choosing a diet with a low glycemic index might be a potential strategy for reducing the negative metabolic effect of chronic exposure to benzene for smokers or people living/working in urban environments with high concentrations of exposure to automobile exhausts.


Asunto(s)
Benceno , Sistemas Electrónicos de Liberación de Nicotina , Acarbosa , Animales , Endorribonucleasas , Masculino , Ratones , Proteínas Serina-Treonina Quinasas
2.
Horm Behav ; 118: 104658, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31874139

RESUMEN

The aim of the present study was to determine whether the TRPV1 channel is involved in the onset of sodium appetite. For this purpose, we used TRPV1-knockout mice to investigate sodium depletion-induced drinking at different times (2/24 h) after furosemide administration combined with a low sodium diet (FURO-LSD). In sodium depleted wild type and TRPV1 KO (SD-WT/SD-TPRV1-KO) mice, we also evaluated the participation of other sodium sensors, such as TPRV4, NaX and angiotensin AT1-receptors (by RT-PCR), as well as investigating the pattern of neural activation shown by Fos immunoreactivity, in different nuclei involved in hydromineral regulation. TPRV1 SD-KO mice revealed an increased sodium preference, ingesting a higher hypertonic cocktail in comparison with SD-WT mice. Our results also showed in SD-WT animals that SFO-Trpv4 expression increased 2 h after FURO-LSD, compared to other groups, thus supporting a role of SFO-Trpv4 channels during the hyponatremic state. However, the SD-TPRV1-KO animals did not show this early increase, and maybe as a consequence drank more hypertonic cocktail. Regarding the SFO-NaX channel expression, in both genotypes our findings revealed a reduction 24 h after FURO-LSD. In addition, there was an increase in the OVLT-NaX expression of SD-WT 24 h after FURO-LSD, suggesting the participation of OVLT-NaX channels in the appearance of sodium appetite, possibly as an anticipatory response in order to limit sodium intake and to induce thirst. Our work demonstrates changes in the expression of different osmo­sodium-sensitive channels at specific nuclei, related to the body sodium status in order to stimulate an adequate drinking.


Asunto(s)
Apetito/genética , Encéfalo/metabolismo , Dieta Hiposódica , Sodio en la Dieta/administración & dosificación , Canales Catiónicos TRPV/fisiología , Animales , Apetito/efectos de los fármacos , Dieta Hiposódica/efectos adversos , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Líquidos/genética , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Furosemida/farmacología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Sodio en la Dieta/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Sed/efectos de los fármacos , Sed/fisiología
3.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014216

RESUMEN

Prolonged exposure to benzene, a prevalent volatile organic compound (VOC), at concentrations found in smoke, triggers hyperglycemia, and inflammation in mice. Corroborating this with existing epidemiological data, we show a strong correlation between environmental benzene exposure and metabolic impairments in humans. To uncover the underlying mechanisms, we employed a controlled exposure system and continuous glucose monitoring (CGM), revealing rapid blood glucose surges and disturbances in energy homeostasis in mice. These effects were attributed to alterations in the hypothalamic transcriptome, specifically impacting insulin and immune response genes, leading to hypothalamic insulin resistance and neuroinflammation. Moreover, benzene exposure activated microglial transcription characterized by heightened expression of IKKß/NF-κB-related genes. Remarkably, selective removal of IKKß in immune cells or adult microglia in mice alleviated benzene-induced hypothalamic gliosis, and protected against hyperglycemia. In summary, our study uncovers a crucial pathophysiological mechanism, establishing a clear link between airborne toxicant exposure and the onset of metabolic diseases.

4.
Sci Rep ; 12(1): 9164, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655069

RESUMEN

Aging is associated a decrease in thirst sensation, which makes old people more susceptible to dehydration. Dehydration produces energy metabolism alterations. Our objective was to determinate the effect of water deprivation (WD) in the lipid metabolism of old male and female rats. Here we show that in the state of WD, aging and sex alters retroperitoneal white adipose tissue (R-WAT) weight of rats, WD old female rats had more lipolysis products than old male rats, a sexual dimorphism in the hormonal response related with metabolism of the adipose tissue of old rats during WD, the expression of P-para mRNA in R-WAT did not present any alteration in animals submitted to WD, the expression of Aqp7 mRNA in R-WAT is altered by WD, age, and sex. Also, WD stimulated an increase in the plasma concentration of oxytocin and the expression of mRNA of the oxytocin receptors in R-WAT.


Asunto(s)
Deshidratación , Metabolismo de los Lípidos , Tejido Adiposo Blanco/metabolismo , Animales , Deshidratación/metabolismo , Femenino , Humanos , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
5.
Neuroscience ; 442: 286-295, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32599125

RESUMEN

During prolonged dehydration, body fluid homeostasis is challenged by extracellular fluid (ECF) hyperosmolality, which induce important functional changes in the hypothalamus, in parallel with other effector responses, such as the activation of the local renin-angiotensin system (RAS). Therefore, in the present study we investigated the role of sodium-driven ECF hyperosmolality on glial fibrillary acid protein (GFAP) immunoreactivity and protein expression, membrane capacitance, mRNA expression of RAS components and glutamate balance in cultured hypothalamic astrocytes. Our data show that hypothalamic astrocytes respond to increased hyperosmolality with a similar decrease in GFAP expression and membrane capacitance, indicative of reduced cellular area. Hyperosmolality also downregulates the transcript levels of angiotensinogen and both angiotensin-converting enzymes, whereas upregulates type 1a angiotensin II receptor mRNA. Incubation with hypertonic solution also decreases the immunoreactivity to the membrane glutamate/aspartate transporter (GLAST) as well as tritiated-aspartate uptake by astrocytes. This latter effect is completely restored to basal levels when astrocytes previously exposed to hypertonicity are incubated under isotonic conditions. Together with a direct effect on two important local signaling systems (glutamate and RAS), these synaptic rearrangements driven by astrocytes may accomplish for a coordinated increase in the excitatory drive onto the hypothalamic neurosecretory system, ultimately culminating with increased AVP release in response to hyperosmolality.


Asunto(s)
Astrocitos , Ácido Glutámico , Astrocitos/metabolismo , Células Cultivadas , Transportador 2 de Aminoácidos Excitadores/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipotálamo/metabolismo , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA