RESUMEN
Glaciers host ecosystems comprised of biodiverse and active microbiota. Among glacial ecosystems, less is known about the ecology of ice caps since most studies focus on valley glaciers or ice sheet margins. Previously we detailed the microbiota of one such high Arctic ice cap, focusing on cryoconite as a microbe-mineral aggregate formed by cyanobacteria. Here, we employ metabolomics at the scale of an entire ice cap to reveal the major metabolic pathways prevailing in the cryoconite of Foxfonna, central Svalbard. We reveal how geophysical and biotic processes influence the metabolomes of its resident cryoconite microbiota. We observed differences in amino acid, fatty acid, and nucleotide synthesis across the cap reflecting the influence of ice topography and the cyanobacteria within cryoconite. Ice topography influences central carbohydrate metabolism and nitrogen assimilation, whereas bacterial community structure governs lipid, nucleotide, and carotenoid biosynthesis processes. The prominence of polyamine metabolism and nitrogen assimilation highlights the importance of recycling nitrogenous nutrients. To our knowledge, this study represents the first application of metabolomics across an entire ice mass, demonstrating its utility as a tool for revealing the fundamental metabolic processes essential for sustaining life in supraglacial ecosystems experiencing profound change due to Arctic climate change-driven mass loss.
Asunto(s)
Cianobacterias , Microbiota , Ecosistema , Ecología , Regiones Árticas , Cubierta de Hielo/microbiología , Nitrógeno , NucleótidosRESUMEN
The rapid warming of the Arctic is threatening the demise of its glaciers and their associated ecosystems. Therefore, there is an urgent need to explore and understand the diversity of genomes resident within glacial ecosystems endangered by human-induced climate change. In this study we use genome-resolved metagenomics to explore the taxonomic and functional diversity of different habitats within glacier-occupied catchments. Comparing different habitats within such catchments offers a natural experiment for understanding the effects of changing habitat extent or even loss upon Arctic microbiota. Through binning and annotation of metagenome-assembled genomes (MAGs) we describe the spatial differences in taxon distribution and their implications for glacier-associated biogeochemical cycling. Multiple taxa associated with carbon cycling included organisms with the potential for carbon monoxide oxidation. Meanwhile, nitrogen fixation was mediated by a single taxon, although diverse taxa contribute to other nitrogen conversions. Genes for sulphur oxidation were prevalent within MAGs implying the potential capacity for sulphur cycling. Finally, we focused on cyanobacterial MAGs, and those within cryoconite, a biodiverse microbe-mineral granular aggregate responsible for darkening glacier surfaces. Although the metagenome-assembled genome of Phormidesmis priestleyi, the cyanobacterium responsible for forming Arctic cryoconite was represented with high coverage, evidence for the biosynthesis of multiple vitamins and co-factors was absent from its MAG. Our results indicate the potential for cross-feeding to sustain P. priestleyi within granular cryoconite. Taken together, genome-resolved metagenomics reveals the vulnerability of glacier-associated microbiota to the deletion of glacial habitats through the rapid warming of the Arctic.
Asunto(s)
Cubierta de Hielo , Microbiota , Humanos , Cubierta de Hielo/química , Cubierta de Hielo/microbiología , Metagenoma , Microbiota/genética , Biodiversidad , AzufreRESUMEN
The Arctic is warming - fast. Microbes in the Arctic play pivotal roles in feedbacks that magnify the impacts of Arctic change. Understanding the genome evolution, diversity and dynamics of Arctic microbes can provide insights relevant for both fundamental microbiology and interdisciplinary Arctic science. Within this synthesis, we highlight four key areas where genomic insights to the microbial dimensions of Arctic change are urgently required: the changing Arctic Ocean, greenhouse gas release from the thawing permafrost, 'biological darkening' of glacial surfaces, and human activities within the Arctic. Furthermore, we identify four principal challenges that provide opportunities for timely innovation in Arctic microbial genomics. These range from insufficient genomic data to develop unifying concepts or model organisms for Arctic microbiology to challenges in gaining authentic insights to the structure and function of low-biomass microbiota and integration of data on the causes and consequences of microbial feedbacks across scales. We contend that our insights to date on the genomics of Arctic microbes are limited in these key areas, and we identify priorities and new ways of working to help ensure microbial genomics is in the vanguard of the scientific response to the Arctic crisis.