Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(9): 1511-1526, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37592015

RESUMEN

Evidence suggests that innate and adaptive cellular responses mediate resistance to the influenza virus and confer protection after vaccination. However, few studies have resolved the contribution of cellular responses within the context of preexisting antibody titers. Here, we measured the peripheral immune profiles of 206 vaccinated or unvaccinated adults to determine how baseline variations in the cellular and humoral immune compartments contribute independently or synergistically to the risk of developing symptomatic influenza. Protection correlated with diverse and polyfunctional CD4+ and CD8+ T, circulating T follicular helper, T helper type 17, myeloid dendritic and CD16+ natural killer (NK) cell subsets. Conversely, increased susceptibility was predominantly attributed to nonspecific inflammatory populations, including γδ T cells and activated CD16- NK cells, as well as TNFα+ single-cytokine-producing CD8+ T cells. Multivariate and predictive modeling indicated that cellular subsets (1) work synergistically with humoral immunity to confer protection, (2) improve model performance over demographic and serologic factors alone and (3) comprise the most important predictive covariates. Together, these results demonstrate that preinfection peripheral cell composition improves the prediction of symptomatic influenza susceptibility over vaccination, demographics or serology alone.


Asunto(s)
Enfermedades Transmisibles , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Adulto , Humanos , Linfocitos T CD8-positivos
2.
Nature ; 603(7902): 687-692, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35062015

RESUMEN

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Asunto(s)
COVID-19/patología , COVID-19/virología , Modelos Animales de Enfermedad , SARS-CoV-2/patogenicidad , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Cricetinae , Femenino , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Carga Viral
3.
BMC Infect Dis ; 22(1): 38, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991508

RESUMEN

BACKGROUND: Influenza A virus (IAV) remains an important global public health threat with limited epidemiological information available from low-and-middle-income countries. The major objective of this study was to describe the proportions, temporal and spatial distribution, and demographic and clinical characteristics of IAV positive patients with influenza like illness (ILI) and severe acute respiratory illness (SARI) in Lahore, Pakistan. METHODS: Prospective surveillance was established in a sentinel hospital from October 2015 to May 2016. All eligible outpatients and inpatients with ILI or SARI were enrolled in the study. Nasal and/or throat swabs were collected along with clinico-epidemiological data. Samples were tested by real-time RT-PCR (rRT-PCR) to identify IAV and subtype. The descriptive analysis of data was done in R software. RESULTS: Out of 311 enrolled patients, 284 (91.3%) were ILI and 27 (8.7%) were SARI cases. A distinct peak of ILI and SARI activity was observed in February. Fifty individuals (16%) were positive for IAV with peak positivity observed in December. Of 50 IAV, 15 were seasonal H3N2, 14 were H1N1pdm09 and 21 were unable to be typed. The majority of IAV positive cases (98%) presented with current or history of fever, 88% reported cough and 82% reported sore throat. The most common comorbidities in IAV positive cases were hepatitis C (4%), obesity (4%) and tuberculosis (6%). The highest incidence of patients reporting to the hospital was seen three days post symptoms onset (66/311) with 14 of these (14/66) positive for IAV. CONCLUSION: Distinct trends of ILI, SARI and IAV positive cases were observed which can be used to inform public health interventions (vaccinations, hand and respiratory hygiene) at appropriate times among high-risk groups. We suggest sampling from both ILI and SARI patients in routine surveillance as recommended by WHO.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Lactante , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/epidemiología , Pakistán/epidemiología , Estudios Prospectivos , Estaciones del Año , Vigilancia de Guardia
4.
Can J Infect Dis Med Microbiol ; 2021: 2460553, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745395

RESUMEN

Epidemiological data about determinants of influenza A virus (IAV) in the Pakistani population is scarce. We aimed to conduct a prospective hospital-based active surveillance study from October 2015 to May 2016 to identify potential risk factors associated with IAV infection among patients with influenza-like illness (ILI) and severe acute respiratory illness (SARI). Surveillance was conducted in Lahore General Hospital, selected as a sentinel site in Lahore District, Pakistan. Nasal/throat samples were collected along with epidemiological and clinical data from enrolled patients. Real-time reverse-transcription polymerase chain reaction (rRT-PCR) was performed to identify IAV and its subtypes (H1N1pdm09, H3N2). Data were analyzed to determine risk factors and risk markers associated with IAV infections. A total of 311 suspected ILI and SARI cases were enrolled in the study, and among these 50 were IAV-positive. Of these 50 confirmed cases of IAV, 14 were subtyped as H1N1pdm09 and 15 were H3N2; the remaining 21 were untyped. A final multivariable model identified four independent risk factors/markers for IAV infection: exposure history to ILI patients within last 7 days and gender being male were identified as risk factors of IAV infection, while use of antibiotics prior to hospital consultation and presence of fever were identified as risk markers. We concluded that adopting nonpharmaceutical interventions like hand hygiene, masks, social distancing, and where possible, avoiding identified risk factors could decrease the risk of IAV infection and may prevent imminent outbreaks of IAV in the community.

5.
J Virol ; 90(17): 7647-56, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27279619

RESUMEN

UNLABELLED: We have previously shown that 11 patients became naturally coinfected with seasonal H1N1 (A/H1N1) and pandemic H1N1 (pdm/H1N1) during the Southern hemisphere winter of 2009 in New Zealand. Reassortment of influenza A viruses is readily observed during coinfection of host animals and in vitro; however, reports of reassortment occurring naturally in humans are rare. Using clinical specimen material, we show reassortment between the two coinfecting viruses occurred with high likelihood directly in one of the previously identified patients. Despite the lack of spread of these reassortants in the community, we did not find them to be attenuated in several model systems for viral replication and virus transmission: multistep growth curves in differentiated human bronchial epithelial cells revealed no growth deficiency in six recovered reassortants compared to A/H1N1 and pdm/H1N1 isolates. Two reassortant viruses were assessed in ferrets and showed transmission to aerosol contacts. This study demonstrates that influenza virus reassortants can arise in naturally coinfected patients. IMPORTANCE: Reassortment of influenza A viruses is an important driver of virus evolution, but little has been done to address humans as hosts for the generation of novel influenza viruses. We show here that multiple reassortant viruses were generated during natural coinfection of a patient with pandemic H1N1 (2009) and seasonal H1N1 influenza A viruses. Though apparently fit in model systems, these reassortants did not become established in the wider population, presumably due to herd immunity against their seasonal H1 antigen.


Asunto(s)
Coinfección/virología , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/virología , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/genética , Animales , Modelos Animales de Enfermedad , Células Epiteliales/virología , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Nueva Zelanda , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Fenotipo , Virus Reordenados/aislamiento & purificación , Virulencia , Replicación Viral
6.
J Infect Dis ; 213(3): 407-10, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26068783

RESUMEN

BACKGROUND: The relationship between influenza virus infectivity and virus shedding, based on different diagnostic methods, has not been defined. METHODS: Three donor ferrets infected with 2009 pandemic influenza A(H1N1) underwent daily quantitative culture, antigen-detection testing, and real-time reverse transcription-polymerase chain reaction (RT-PCR). Eight contacts were sequentially cohoused with each of the donors for 24 hours during days 3-10 after inoculation. RESULTS: Transmission was observed until day 5 after inoculation, corresponding to high culture titers and positive results of antigen-detection tests. Real-time RT-PCR showed no relation to the cessation of transmission. CONCLUSIONS: Antigen-detection testing and virus culture but not real-time RT-PCR identified the end of the infectious period.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae/virología , Esparcimiento de Virus/fisiología , Animales , Antígenos Virales , Hurones , Infecciones por Orthomyxoviridae/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Sensibilidad y Especificidad , Cultivo de Virus
7.
J Infect Dis ; 212(4): 542-51, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25712975

RESUMEN

BACKGROUND: An effective vaccine is urgently needed against the H7N9 avian influenza virus. We evaluated the immunogenicity and protective efficacy of a split-virion H7N9 vaccine with or without the oil-in-water adjuvants in ferrets. METHODS: Ferrets were vaccinated with 2 doses of unadjuvanted, MF59 or AS03-adjuvanted A/Shanghai/2/2013 (H7N9) vaccine, and the induction of antibodies to hemagglutinin (HA) or neuraminidase proteins was evaluated. Ferrets were then challenged with wild-type H7N9 virus to assess the vaccine's protective efficacy. The vaccine composition and integrity was also evaluated in vitro. RESULTS: Adjuvanted vaccines stimulated robust serum antibody titers against HA and neuraminidase compared with the unadjuvanted vaccines. Although there was a difference in adjuvanticity between AS03 and MF59 at a lower dose (3.75 µg of HA), both adjuvants induced comparable antibody responses after 2 doses of 15 µg. On challenge, ferrets that received adjuvanted vaccines showed lower viral burden than the control or unadjuvanted vaccine group. In vitro examinations revealed that the vaccine contained visible split-virus particles and retained the native conformation of HA recognizable by polyclonal and monoclonal antibodies. CONCLUSIONS: The adjuvanted H7N9 vaccines demonstrated superior immunogenicity and protective efficacy against H7N9 infection in ferrets and hold potential as a vaccination regimen.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Polisorbatos/farmacología , Escualeno/farmacología , alfa-Tocoferol/farmacología , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Antivirales/sangre , Reacciones Cruzadas , Relación Dosis-Respuesta Inmunológica , Combinación de Medicamentos , Hurones , Masculino , Polisorbatos/administración & dosificación , Organismos Libres de Patógenos Específicos , Escualeno/administración & dosificación , alfa-Tocoferol/administración & dosificación
8.
Emerg Infect Dis ; 21(10): 1834-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26402228

RESUMEN

To clarify the epidemiology of influenza A viruses in coordinated swine production systems to which no animals from outside the system are introduced, we conducted virologic surveillance during September 2012-September 2013. Animal age, geographic location, and farm type were found to affect the prevalence of these viruses.


Asunto(s)
Monitoreo Epidemiológico , Virus de la Influenza A/patogenicidad , Ganado/virología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/epidemiología , Porcinos/virología , Animales , Estados Unidos/epidemiología
9.
Proc Natl Acad Sci U S A ; 108(7): 2927-32, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21270336

RESUMEN

Clinical studies have indicated that subvirion inactivated vaccines against avian influenza viruses, particularly H5N1, are poorly immunogenic in humans. As a consequence, the use of adjuvants has been championed for the efficient vaccination of a naïve population against avian influenza. Aluminum salts (alum) and the oil-in-water emulsion MF59 are safe and effective adjuvants that are being used with influenza vaccines, but the mechanism underlying their stimulation of the immune system remains poorly understood. It was shown recently that activation of a cytosolic innate immune-sensing complex known as "NLR-Pyrin domain containing 3" (NLRP3) inflammasome, also known as "cryopyrin," "cold-induced autoinflammatory syndrome 1" (CIAS1), or nacht domain-, leucine-rich repeat-, and PYD-containing protein 3 (Nalp3), is essential for the adjuvant effect of alum. Here we show that the inflammasome component apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), an adapter protein within the NLRP3 inflammasome, is a crucial element in the adjuvant effect of MF59 when combined with H5N1 subunit vaccines. In the absence of ASC, H5-specific IgG antibody responses are significantly reduced, whereas the responses are intact in NLRP3(-/-) and caspase-1(-/-) mice. This defect is caused mainly by the failure of antigen-specific B cells to switch from IgM to IgG production. We conclude that ASC plays an inflammasome-independent role in the induction of antigen-specific humoral immunity after vaccination with MF59-adjuvanted influenza vaccines. These findings have important implications for the rational design of next-generation adjuvants.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Polisorbatos/uso terapéutico , Escualeno/uso terapéutico , Animales , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Caspasa 1/genética , Caspasa 1/inmunología , Citocinas/inmunología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/inmunología , Ensayo de Inmunoadsorción Enzimática , Ensayo de Immunospot Ligado a Enzimas , Citometría de Flujo , Pruebas de Hemaglutinación , Humanos , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Estadísticas no Paramétricas
10.
Nat Commun ; 15(1): 4350, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782954

RESUMEN

mRNA lipid nanoparticle (LNP) vaccines would be useful during an influenza virus pandemic since they can be produced rapidly and do not require the generation of egg-adapted vaccine seed stocks. Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. Here, we generate an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. The H5 mRNA-LNP vaccine elicits strong T cell and antibody responses in female mice, including neutralizing antibodies and broadly-reactive anti-HA stalk antibodies. The H5 mRNA-LNP vaccine elicits antibodies at similar levels compared to whole inactivated vaccines in female mice with and without prior H1N1 exposures. Finally, we find that the H5 mRNA-LNP vaccine is immunogenic in male ferrets and prevents morbidity and mortality of animals following 2.3.4.4b H5N1 challenge. Together, our data demonstrate that a monovalent mRNA-LNP vaccine expressing 2.3.4.4b H5 is immunogenic and protective in pre-clinical animal models.


Asunto(s)
Anticuerpos Antivirales , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Nanopartículas , Infecciones por Orthomyxoviridae , Vacunas de ARNm , Animales , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Femenino , Ratones , Nanopartículas/química , Masculino , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Vacunas de ARNm/inmunología , Anticuerpos Neutralizantes/inmunología , Ratones Endogámicos BALB C , Gripe Aviar/prevención & control , Gripe Aviar/inmunología , Gripe Aviar/virología , Humanos , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/genética , Aves/virología , Lípidos/química , Liposomas
11.
NPJ Vaccines ; 8(1): 157, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828126

RESUMEN

Annually, seasonal influenza is responsible for millions of infections and hundreds of thousands of deaths. The current method for managing influenza is vaccination using a standardized amount of the influenza virus' primary surface antigen, hemagglutinin (HA), as the intended target of the immune response. This vaccination strategy results in vaccines with variable efficacy year to year due to antigenic drift of HA, which can be further exacerbated by manufacturing processes optimizing growth of vaccine virus in eggs. Due to these limitations, alternative vaccine platforms are actively being explored to improve influenza vaccine efficacy, including cell-based, recombinant protein, and mRNA vaccines. mRNA's rapid, in vitro production makes it an appealing platform for influenza vaccination, and the success of SARS-CoV-2 mRNA vaccines in the clinic has encouraged the development of mRNA vaccines for other pathogens. Here, the immunogenicity and protective efficacy of a quadrivalent mRNA vaccine encoding HA from four seasonal influenza viruses, A/California/07/2009 (H1N1), A/Hong Kong/4801/2014 (H3N2), B/Brisbane/60/2008 (B-Victoria lineage), and B/Phuket/3073/2013 (B-Yamagata lineage), was evaluated. In mice, a 120 µg total dose of this quadrivalent mRNA vaccine induced robust antibody titers against each subtype that were commensurate with titers when each antigen was administered alone. Following A/California/04/2009 challenge, mice were fully protected from morbidity and mortality, even at doses as low as 1 µg of each antigen. Additionally, a single administration of 10 µg of quadrivalent mRNA was sufficient to prevent weight loss caused by A/California/04/2009. These results support the promise of this mRNA vaccine for prevention and mitigation of influenza vaccine.

12.
bioRxiv ; 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37162920

RESUMEN

Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. We generated an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. We show that the vaccine is immunogenic in mice and ferrets and prevents morbidity and mortality of ferrets following 2.3.4.4b H5N1 challenge.

13.
Nat Commun ; 14(1): 3082, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248261

RESUMEN

Highly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.4b underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, 2.3.4.4b viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade 2.3.4.4b was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) 2.3.4.4b virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Gripe Humana/epidemiología , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Animales Salvajes , Aves , Aves de Corral , Filogenia , Mamíferos
14.
Front Immunol ; 14: 1129765, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926342

RESUMEN

Introduction: External Quality Assessment (EQA) schemes are designed to provide a snapshot of laboratory proficiency, identifying issues and providing feedback to improve laboratory performance and inter-laboratory agreement in testing. Currently there are no international EQA schemes for seasonal influenza serology testing. Here we present a feasibility study for conducting an EQA scheme for influenza serology methods. Methods: We invited participant laboratories from industry, contract research organizations (CROs), academia and public health institutions who regularly conduct hemagglutination inhibition (HAI) and microneutralization (MN) assays and have an interest in serology standardization. In total 16 laboratories returned data including 19 data sets for HAI assays and 9 data sets for MN assays. Results: Within run analysis demonstrated good laboratory performance for HAI, with intrinsically higher levels of intra-assay variation for MN assays. Between run analysis showed laboratory and strain specific issues, particularly with B strains for HAI, whilst MN testing was consistently good across labs and strains. Inter-laboratory variability was higher for MN assays than HAI, however both assays showed a significant reduction in inter-laboratory variation when a human sera pool is used as a standard for normalization. Discussion: This study has received positive feedback from participants, highlighting the benefit such an EQA scheme would have on improving laboratory performance, reducing inter laboratory variation and raising awareness of both harmonized protocol use and the benefit of biological standards for seasonal influenza serology testing.


Asunto(s)
Gripe Humana , Humanos , Hemaglutinación , Laboratorios , Estudios de Factibilidad , Estaciones del Año
15.
NPJ Vaccines ; 7(1): 65, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739199

RESUMEN

There is a crucial need for an improved H3N2 influenza virus vaccine due to low vaccine efficacy rates and increased morbidity and mortality associated with H3N2-dominated influenza seasons. Here, we utilize a computational design strategy to produce epitope-optimized, broadly cross-reactive H3 hemagglutinins in order to create a universal H3N2 influenza vaccine. The Epigraph immunogens are designed to maximize the viral population frequency of epitopes incorporated into the immunogen. We compared our Epigraph H3 vaccine to the traditional egg-based inactivated influenza vaccine from 2018-19, FluZone. Epigraph vaccination-induced stronger cross-reactive antibody responses than FluZone against 18 H3N2 viruses isolated from 1968 to 2019 in both mice and ferrets, with protective hemagglutination inhibition titers against 93-100% of the contemporary H3N2 strains compared to only 27% protection measured from FluZone. In addition, Epigraph vaccination-induced strong cross-reactive T-cell immunity which significantly contributes to protection against lethal influenza virus infection. Finally, Epigraph vaccination protected ferrets from influenza disease after challenge with two H3N2 viruses. The superior cross-reactive immunity induced by these Epigraph immunogens supports their development as a universal H3N2 influenza vaccine.

16.
J Virol ; 84(15): 7662-7, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20484500

RESUMEN

Our ability to rapidly respond to an emerging influenza pandemic is hampered somewhat by the lack of a susceptible small-animal model. To develop a more sensitive model, we pathotyped 18 low-pathogenic non-mouse-adapted influenza A viruses of human and avian origin in DBA/2 and C57BL/6 mice. The majority of the isolates (13/18) induced severe morbidity and mortality in DBA/2 mice upon intranasal challenge with 1 million infectious doses. Also, at a 100-fold-lower dose, more than 50% of the viruses induced severe weight loss, and mice succumbed to the infection. In contrast, only two virus strains were pathogenic for C57BL/6 mice upon high-dose inoculation. Therefore, DBA/2 mice are a suitable model to validate influenza A virus vaccines and antiviral therapies without the need for extensive viral adaptation. Correspondingly, we used the DBA/2 model to assess the level of protection afforded by preexisting pandemic H1N1 2009 virus (H1N1pdm) cross-reactive human antibodies detected by a hemagglutination inhibition assay. Passive transfer of these antibodies prior to infection protected mice from H1N1pdm-induced pathogenicity, demonstrating the effectiveness of these cross-reactive neutralizing antibodies in vivo.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Protección Cruzada , Reacciones Cruzadas , Subtipo H1N1 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Animales , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Peso Corporal , Modelos Animales de Enfermedad , Femenino , Pruebas de Inhibición de Hemaglutinación , Humanos , Inmunización Pasiva , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/patología , Análisis de Supervivencia
17.
J Infect Dis ; 202(11): 1634-8, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20979454

RESUMEN

Levels of preexisting antibodies to the hemagglutinin of pandemic influenza A(H1N1) 2009 (hereafter pandemic H1N1) virus positively correlate with age. The impact of contemporary seasonal influenza vaccines on establishing immunity to other pandemic H1N1 proteins is unknown. We measured serum antibodies to the neuraminidase (NA) of pandemic H1N1 in adults prior to and after vaccination with seasonal trivalent inactivated influenza vaccines. Serum antibodies to pandemic H1N1 NA were observed in all age groups; however, vaccination elevated levels of pandemic H1N1 NA antibodies predominately in elderly individuals (age, ⩾60 years). Therefore, contemporary seasonal vaccines likely contribute to reduction of pandemic H1N1-associated disease in older individuals.


Asunto(s)
Anticuerpos Antivirales/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Colombia Británica , Connecticut , Humanos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Gripe Humana/prevención & control , Persona de Mediana Edad , Neuraminidasa/inmunología , Pandemias/prevención & control , Vacunas de Productos Inactivados/inmunología , Adulto Joven
18.
Nat Commun ; 12(1): 1203, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619277

RESUMEN

Influenza A virus infection in swine impacts the agricultural industry in addition to its zoonotic potential. Here, we utilize epigraph, a computational algorithm, to design a universal swine H3 influenza vaccine. The epigraph hemagglutinin proteins are delivered using an Adenovirus type 5 vector and are compared to a wild type hemagglutinin and the commercial inactivated vaccine, FluSure. In mice, epigraph vaccination leads to significant cross-reactive antibody and T-cell responses against a diverse panel of swH3 isolates. Epigraph vaccination also reduces weight loss and lung viral titers in mice after challenge with three divergent swH3 viruses. Vaccination studies in swine, the target species for this vaccine, show stronger levels of cross-reactive antibodies and T-cell responses after immunization with the epigraph vaccine compared to the wild type and FluSure vaccines. In both murine and swine models, epigraph vaccination shows superior cross-reactive immunity that should be further investigated as a universal swH3 vaccine.


Asunto(s)
Algoritmos , Reacciones Cruzadas/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Animales , Formación de Anticuerpos/inmunología , Epítopos/inmunología , Femenino , Humanos , Gripe Humana/sangre , Gripe Humana/inmunología , Gripe Humana/virología , Pulmón/patología , Pulmón/virología , Masculino , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/sangre , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Porcinos , Linfocitos T/inmunología , Vacunación , Pérdida de Peso
19.
Vaccines (Basel) ; 9(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34835278

RESUMEN

Stable, effective, easy-to-manufacture vaccines are critical to stopping the COVID-19 pandemic resulting from the coronavirus SARS-CoV-2. We constructed a vaccine candidate CoV-RBD121-NP, which is comprised of the SARS-CoV-2 receptor-binding domain (RBD) of the spike glycoprotein (S) fused to a human IgG1 Fc domain (CoV-RBD121) and conjugated to a modified tobacco mosaic virus (TMV) nanoparticle. In vitro, CoV-RBD121 bound to the host virus receptor ACE2 and to the monoclonal antibody CR3022, a neutralizing antibody that blocks S binding to ACE2. The CoV-RBD121-NP vaccine candidate retained key SARS-CoV-2 spike protein epitopes, had consistent manufacturing release properties of safety, identity, and strength, and displayed stable potency when stored for 12 months at 2-8 °C or 22-28 °C. Immunogenicity studies revealed strong antibody responses in C57BL/6 mice with non-adjuvanted or adjuvanted (7909 CpG) formulations. The non-adjuvanted vaccine induced a balanced Th1/Th2 response and antibodies that recognized both the S1 domain and full S protein from SARS2-CoV-2, whereas the adjuvanted vaccine induced a Th1-biased response. Both adjuvanted and non-adjuvanted vaccines induced virus neutralizing titers as measured by three different assays. Collectively, these data showed the production of a stable candidate vaccine for COVID-19 through the association of the SARS-CoV-2 RBD with the TMV-like nanoparticle.

20.
Nat Microbiol ; 6(11): 1455-1465, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34702977

RESUMEN

Understanding the evolutionary adaptations that enable avian influenza viruses to transmit in mammalian hosts could allow better detection of zoonotic viruses with pandemic potential. We applied ancestral sequence reconstruction to gain viruses representing different adaptive stages of the European avian-like (EA) H1N1 swine influenza virus as it transitioned from avian to swine hosts since 1979. Ancestral viruses representing the avian-like precursor virus and EA swine influenza viruses from 1979-1983, 1984-1987 and 1988-1992 were reconstructed and characterized. Glycan-binding analyses showed stepwise changes in the haemagglutinin receptor-binding specificity of the EA swine influenza viruses-that is, from recognition of both α2,3- and α2,6-linked sialosides to recognition of α2,6-linked sialosides only; however, efficient transmission in piglets was enabled by adaptive changes in the viral polymerase protein and nucleoprotein, which have been fixed since 1983. PB1-Q621R and NP-R351K increased viral replication and transmission in piglets when introduced into the 1979-1983 ancestral virus that lacked efficient transmissibility. The stepwise adaptation of an avian influenza virus to a mammalian host suggests that there may be opportunities to intervene and prevent interspecies jumps through strategic coordination of surveillance and risk assessment activities.


Asunto(s)
Adaptación Fisiológica , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Aviar/virología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Animales , Aves , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Aviar/transmisión , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Filogenia , Polisacáridos/química , Polisacáridos/metabolismo , Receptores Virales/química , Receptores Virales/metabolismo , Porcinos , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/transmisión , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA