Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Recognit ; 29(6): 281-91, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26804042

RESUMEN

Plasmodium falciparum apical membrane antigen 1 (PfAMA1) plays an important role in the invasion by merozoites of human red blood cells during a malaria infection. A key region of PfAMA1 is a conserved hydrophobic cleft formed by 12 hydrophobic residues. As anti-apical membrane antigen 1 antibodies and other inhibitory molecules that target this hydrophobic cleft are able to block the invasion process, PfAMA1 is an attractive target for the development of strain-transcending antimalarial agents. As solution nuclear magnetic resonance spectroscopy is a valuable technique for the rapid characterization of protein-ligand interactions, we have determined the sequence-specific backbone assignments for PfAMA1 from two P. falciparum strains, FVO and 3D7. Both selective labelling and unlabelling strategies were used to complement triple-resonance experiments in order to facilitate the assignment process. We have then used these assignments for mapping the binding sites for small molecules, including benzimidazoles, pyrazoles and 2-aminothiazoles, which were selected on the basis of their affinities measured from surface plasmon resonance binding experiments. Among the compounds tested, benzimidazoles showed binding to a similar region on both FVO and 3D7 PfAMA1, suggesting that these compounds are promising scaffolds for the development of novel PfAMA1 inhibitors. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Antimaláricos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Secuencia de Aminoácidos , Antimaláricos/química , Bencimidazoles/química , Bencimidazoles/metabolismo , Sitios de Unión , Diseño de Fármacos , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Pirazoles/química , Pirazoles/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Tiazoles/química , Tiazoles/metabolismo
2.
Biochemistry ; 53(46): 7310-20, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25360546

RESUMEN

Apical membrane antigen 1 (AMA1) interacts with RON2 to form a protein complex that plays a key role in the invasion of host cells by malaria parasites. Blocking this protein-protein interaction represents a potential route to controlling malaria and related parasitic diseases, but the polymorphic nature of AMA1 has proven to be a major challenge to vaccine-induced antibodies and peptide inhibitors exerting strain-transcending inhibitory effects. Here we present the X-ray crystal structure of AMA1 domains I and II from Plasmodium falciparum strain FVO. We compare our new structure to those of AMA1 from P. falciparum 3D7 and Plasmodium vivax. A combination of normalized B factor analysis and computational methods has been used to investigate the flexibility of the domain I loops and how this correlates with their roles in determining the strain specificity of human antibody responses and inhibitory peptides. We also investigated the domain II loop, a key region involved in inhibitor binding, by comparison of multiple AMA1 crystal structures. Collectively, these results provide valuable insights that should contribute to the design of strain-transcending agents targeting P. falciparum AMA1.


Asunto(s)
Antígenos de Protozoos/química , Malaria Falciparum/parasitología , Proteínas de la Membrana/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Plasmodium vivax/química , Estructura Terciaria de Proteína
3.
ChemMedChem ; 14(5): 603-612, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30653832

RESUMEN

Apical membrane antigen 1 (AMA1) is essential for the invasion of host cells by malaria parasites. Several small-molecule ligands have been shown to bind to a conserved hydrophobic cleft in Plasmodium falciparum AMA1. However, a lack of detailed structural information on the binding pose of these molecules has hindered their further optimisation as inhibitors. We have developed a spin-labelled peptide based on RON2, the native binding partner of AMA1, to probe the binding sites of compounds on PfAMA1. The crystal structure of this peptide bound to PfAMA1 shows that it binds at one end of the hydrophobic groove, leaving much of the binding site unoccupied and allowing fragment hits to bind without interference. In paramagnetic relaxation enhancement (PRE)-based NMR screening, the 1 H relaxation rates of compounds binding close to the probe were enhanced. Compounds experienced different degrees of PRE as a result of their different orientations relative to the spin label while bound to AMA1. Thus, PRE-derived distance constraints can be used to identify binding sites and guide further hit optimisation.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Proteínas de la Membrana/antagonistas & inhibidores , Sondas Moleculares/química , Péptidos/química , Proteínas Protozoarias/antagonistas & inhibidores , Secuencia de Aminoácidos , Antígenos de Protozoos , Bencimidazoles/química , Sitios de Unión , Membrana Celular/metabolismo , Cristalografía por Rayos X , Furanos/química , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Sondas Moleculares/metabolismo , Estructura Molecular , Péptidos/metabolismo , Unión Proteica , Pirazoles/química , Pirimidinas/química , Pirroles/química , Quinazolinonas/química , Relación Estructura-Actividad , Sulfonamidas/química
4.
J Med Chem ; 58(3): 1205-14, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25559643

RESUMEN

We have identified a class of molecules, known as 2-aminothiazoles (2-ATs), as frequent-hitting fragments in biophysical binding assays. This was exemplified by 4-phenylthiazol-2-amine being identified as a hit in 14/14 screens against a diverse range of protein targets, suggesting that this scaffold is a poor starting point for fragment-based drug discovery. This prompted us to analyze this scaffold in the context of an academic fragment library used for fragment-based drug discovery (FBDD) and two larger compound libraries used for high-throughput screening (HTS). This analysis revealed that such "promiscuous 2-aminothiazoles" (PrATs) behaved as frequent hitters under both FBDD and HTS settings, although the problem was more pronounced in the fragment-based studies. As 2-ATs are present in known drugs, they cannot necessarily be deemed undesirable, but the combination of their promiscuity and difficulties associated with optimizing them into a lead compound makes them, in our opinion, poor scaffolds for fragment libraries.


Asunto(s)
Tiazoles/química , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Espectroscopía de Resonancia Magnética , Estructura Molecular , Resonancia por Plasmón de Superficie
5.
J Med Chem ; 57(15): 6419-27, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25068708

RESUMEN

We established an efficient means of probing ligand-induced conformational change in the malaria drug target AMA1 using 19F NMR. AMA1 was labeled with 5-fluorotryptophan (5F-Trp), and the resulting 5F-Trp resonances were assigned by mutagenesis of the native Trp residues. By introducing additional Trp residues at strategic sites within a ligand-responsive loop, we detected distinct conformational consequences when various peptide and small-molecule ligands bound AMA1. Our results demonstrate an increase in flexibility in this loop caused by the native ligand, as inferred from, but not directly observed in, crystal structures. In addition, we found evidence for long-range allosteric changes in AMA1 that are not observed crystallographically. This method will be valuable in ongoing efforts to identify and characterize therapeutically relevant inhibitors of protein-protein interactions involving AMA1 and is generalizable to the study of ligand-induced conformational change in a wide range of other drug targets.


Asunto(s)
Antígenos de Protozoos/química , Proteínas de la Membrana/química , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Antígenos de Protozoos/genética , Antimaláricos/química , Radioisótopos de Flúor , Ligandos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA