Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 198: 106538, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38789057

RESUMEN

Aging is the main risk factor of cognitive neurodegenerative diseases such as Alzheimer's disease, with epigenome alterations as a contributing factor. Here, we compared transcriptomic/epigenomic changes in the hippocampus, modified by aging and by tauopathy, an AD-related feature. We show that the cholesterol biosynthesis pathway is severely impaired in hippocampal neurons of tauopathic but not of aged mice pointing to vulnerability of these neurons in the disease. At the epigenomic level, histone hyperacetylation was observed at neuronal enhancers associated with glutamatergic regulations only in the tauopathy. Lastly, a treatment of tau mice with the CSP-TTK21 epi-drug that restored expression of key cholesterol biosynthesis genes counteracted hyperacetylation at neuronal enhancers and restored object memory. As acetyl-CoA is the primary substrate of both pathways, these data suggest that the rate of the cholesterol biosynthesis in hippocampal neurons may trigger epigenetic-driven changes, that may compromise the functions of hippocampal neurons in pathological conditions.


Asunto(s)
Enfermedad de Alzheimer , Colesterol , Hipocampo , Ratones Transgénicos , Neuronas , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Hipocampo/metabolismo , Colesterol/biosíntesis , Colesterol/metabolismo , Neuronas/metabolismo , Ratones , Epigenómica , Epigénesis Genética , Ratones Endogámicos C57BL , Envejecimiento/metabolismo , Envejecimiento/genética , Masculino , Proteínas tau/metabolismo , Proteínas tau/genética
2.
Mol Psychiatry ; 28(11): 4568-4584, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37723284

RESUMEN

In the past two decades, over-prescription of opioids for pain management has driven a steep increase in opioid use disorder (OUD) and death by overdose, exerting a dramatic toll on western countries. OUD is a chronic relapsing disease associated with a lifetime struggle to control drug consumption, suggesting that opioids trigger long-lasting brain adaptations, notably through functional genomic and epigenomic mechanisms. Current understanding of these processes, however, remain scarce, and have not been previously reviewed systematically. To do so, the goal of the present work was to synthesize current knowledge on genome-wide transcriptomic and epigenetic mechanisms of opioid action, in primate and rodent species. Using a prospectively registered methodology, comprehensive literature searches were completed in PubMed, Embase, and Web of Science. Of the 2709 articles identified, 73 met our inclusion criteria and were considered for qualitative analysis. Focusing on the 5 most studied nervous system structures (nucleus accumbens, frontal cortex, whole striatum, dorsal striatum, spinal cord; 44 articles), we also conducted a quantitative analysis of differentially expressed genes, in an effort to identify a putative core transcriptional signature of opioids. Only one gene, Cdkn1a, was consistently identified in eleven studies, and globally, our results unveil surprisingly low consistency across published work, even when considering most recent single-cell approaches. Analysis of sources of variability detected significant contributions from species, brain structure, duration of opioid exposure, strain, time-point of analysis, and batch effects, but not type of opioid. To go beyond those limitations, we leveraged threshold-free methods to illustrate how genome-wide comparisons may generate new findings and hypotheses. Finally, we discuss current methodological development in the field, and their implication for future research and, ultimately, better care.


Asunto(s)
Sobredosis de Droga , Trastornos Relacionados con Opioides , Animales , Humanos , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Trastornos Relacionados con Opioides/genética , Trastornos Relacionados con Opioides/tratamiento farmacológico , Enfermedad Crónica , Genómica , Modelos Animales
3.
Clin Chem ; 64(2): 317-328, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29122835

RESUMEN

BACKGROUND: Progress in the liquid biopsy field, combined with the development of droplet digital PCR (ddPCR), has enabled noninvasive monitoring of mutations with high detection accuracy. However, current assays detect a restricted number of mutations per reaction. ddPCR is a recognized method for detecting alterations previously characterized in tumor tissues, but its use as a discovery tool when the mutation is unknown a priori remains limited. METHODS: We established 2 ddPCR assays detecting all genomic alterations within KRAS exon 2 and EGFR exon 19 mutation hotspots, which are of clinical importance in colorectal and lung cancer, with use of a unique pair of TaqMan® oligoprobes. The KRAS assay scanned for the 7 most common mutations in codons 12/13 but also all other mutations found in that region. The EGFR assay screened for all in-frame deletions of exon 19, which are frequent EGFR-activating events. RESULTS: The KRAS and EGFR assays were highly specific and both reached a limit of detection of <0.1% in mutant allele frequency. We further validated their performance on multiple plasma and formalin-fixed and paraffin-embedded tumor samples harboring a panel of different KRAS or EGFR mutations. CONCLUSIONS: This method presents the advantage of detecting a higher number of mutations with single-reaction ddPCRs while consuming a minimum of patient sample. This is particularly useful in the context of liquid biopsy because the amount of circulating tumor DNA is often low. This method should be useful as a discovery tool when the tumor tissue is unavailable or to monitor disease during therapy.


Asunto(s)
Receptores ErbB/genética , Genes ras , Mutación , Neoplasias/genética , Reacción en Cadena de la Polimerasa/métodos , Biopsia , ADN Tumoral Circulante/sangre , Humanos , Límite de Detección , Biopsia Líquida , Sondas Moleculares , Neoplasias/sangre , Neoplasias/patología
4.
PLoS Genet ; 9(5): e1003424, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23658527

RESUMEN

Canonical Wnt signaling plays a rate-limiting role in regulating self-renewal and differentiation in mouse embryonic stem cells (ESCs). We have previously shown that mutation in the Apc (adenomatous polyposis coli) tumor suppressor gene constitutively activates Wnt signaling in ESCs and inhibits their capacity to differentiate towards ecto-, meso-, and endodermal lineages. However, the underlying molecular and cellular mechanisms through which Wnt regulates lineage differentiation in mouse ESCs remain to date largely unknown. To this aim, we have derived and studied the gene expression profiles of several Apc-mutant ESC lines encoding for different levels of Wnt signaling activation. We found that down-regulation of Tcf3, a member of the Tcf/Lef family and a key player in the control of self-renewal and pluripotency, represents a specific and primary response to Wnt activation in ESCs. Accordingly, rescuing Tcf3 expression partially restored the neural defects observed in Apc-mutant ESCs, suggesting that Tcf3 down-regulation is a necessary step towards Wnt-mediated suppression of neural differentiation. We found that Tcf3 down-regulation in the context of constitutively active Wnt signaling does not result from promoter DNA methylation but is likely to be caused by a plethora of mechanisms at both the RNA and protein level as shown by the observed decrease in activating histone marks (H3K4me3 and H3-acetylation) and the upregulation of miR-211, a novel Wnt-regulated microRNA that targets Tcf3 and attenuates early neural differentiation in mouse ESCs. Our data show for the first time that Wnt signaling down-regulates Tcf3 expression, possibly at both the transcriptional and post-transcriptional levels, and thus highlight a novel mechanism through which Wnt signaling inhibits neuro-ectodermal lineage differentiation in mouse embryonic stem cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Células Madre Embrionarias/fisiología , Vía de Señalización Wnt , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula , Metilación de ADN , Regulación hacia Abajo , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Ratones , Mutación , Transcripción Genética
5.
Carcinogenesis ; 35(1): 2-13, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23955540

RESUMEN

Wnt signaling plays a central role in mammary stem cell (MaSC) homeostasis and in breast cancer. In particular, epigenetic alterations at different members of the Wnt pathway have been identified among triple-negative, basal-like breast cancers. Previously, we developed a mouse model for metaplastic breast adenocarcinoma, a subtype of triple-negative breast cancer, by targeting a hypomorphic mutations in the endogenous Apc gene (Apc (1572T/+)). Here, by employing the CD24 and CD29 cell surface antigens, we have identified a subpopulation of mammary cancer stem cells (MaCSCs) from Apc (1572T/+) capable of self-renewal and differentiation both in vivo and in vitro. Moreover, immunohistochemical analysis of micro- and macrolung metastases and preliminary intravenous transplantation assays suggest that the MaCSCs underlie metastasis at distant organ sites. Expression profiling of the normal and tumor cell subpopulations encompassing MaSCs and CSCs revealed that the normal stem cell compartment is more similar to tumor cells than to their own differentiated progenies. Accordingly, Wnt signaling appears to be active in both the normal and cancer stem cell compartments, although at different levels. By comparing normal with cancer mouse mammary compartments, we identified a MaCSC gene signature able to predict outcome in breast cancer in man. Overall, our data indicate that constitutive Wnt signaling activation affects self-renewal and differentiation of MaSCs leading to metaplasia and basal-like adenocarcinomas.


Asunto(s)
Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Células Madre Neoplásicas/patología , Vía de Señalización Wnt/fisiología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Antígeno CD24/metabolismo , Diferenciación Celular , Femenino , Humanos , Integrina beta1/metabolismo , Glándulas Mamarias Animales/citología , Ratones , Ratones Transgénicos , Células Madre Neoplásicas/metabolismo , Valor Predictivo de las Pruebas , Valores de Referencia , Transcriptoma , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
6.
Semin Cancer Biol ; 22(3): 250-60, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22459768

RESUMEN

Despite advances in chemotherapy, hormone therapy and radiotherapy, not all cancer patients respond favorably to treatment. However, progress in understanding the mechanisms of malignant diseases and the mode of action of therapies are opening opportunities to match treatment to specific patient subpopulations, paving the way for personalized medicine. In this context, high throughput technologies that have been developed to determine gene expression profiles potentially offer an effective tool for dissecting the biology of cancer pathologies, for identifying candidate molecules for the development of new drugs, and for identifying individual patients who are more likely to respond favorably to a given therapy. Here, we overview and discuss the robustness of the deployment of these technologies in these contexts. We conclude that while these technologies are useful for target identification, there are limitations to their use in understanding cancer biology and in routine clinical application.


Asunto(s)
Perfilación de la Expresión Génica , Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Humanos , Neoplasias/clasificación , Neoplasias/diagnóstico , Células Madre Neoplásicas/clasificación , Medicina de Precisión
7.
Semin Cancer Biol ; 22(3): 174-86, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22374376

RESUMEN

The ability of tumor cells to leave a primary tumor, to disseminate through the body, and to ultimately seed new secondary tumors is universally agreed to be the basis for metastasis formation. An accurate description of the cellular and molecular mechanisms that underlie this multistep process would greatly facilitate the rational development of therapies that effectively allow metastatic disease to be controlled and treated. A number of disparate and sometimes conflicting hypotheses and models have been suggested to explain various aspects of the process, and no single concept explains the mechanism of metastasis in its entirety or encompasses all observations and experimental findings. The exciting progress made in metastasis research in recent years has refined existing ideas, as well as giving rise to new ones. In this review we survey some of the main theories that currently exist in the field, and show that significant convergence is emerging, allowing a synthesis of several models to give a more comprehensive overview of the process of metastasis. As a result we postulate a stromal progression model of metastasis. In this model, progressive modification of the tumor microenvironment is equally as important as genetic and epigenetic changes in tumor cells during primary tumor progression. Mutual regulatory interactions between stroma and tumor cells modify the stemness of the cells that drive tumor growth, in a manner that involves epithelial-mesenchymal and mesenchymal-epithelial-like transitions. Similar interactions need to be recapitulated at secondary sites for metastases to grow. Early disseminating tumor cells can progress at the secondary site in parallel to the primary tumor, both in terms of genetic changes, as well as progressive development of a metastatic stroma. Although this model brings together many ideas in the field, there remain nevertheless a number of major open questions, underscoring the need for further research to fully understand metastasis, and thereby identify new and effective ways of treating metastatic disease.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Matriz Extracelular/genética , Células Madre Mesenquimatosas/metabolismo , Metástasis de la Neoplasia/patología , Neoplasias/patología , Células Madre Neoplásicas/metabolismo , Microambiente Tumoral/fisiología , Hibridación Genómica Comparativa , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Expresión Génica , Humanos , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/fisiopatología
8.
Mol Cancer ; 12(1): 132, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-24171719

RESUMEN

BACKGROUND: Basal-like breast cancer is a heterogeneous disease characterized by the expression of basal cell markers, no estrogen or progesterone receptor expression and a lack of HER2 overexpression. Recent studies have linked activation of the Wnt/ß-catenin pathway, and its downstream target, Myc, to basal-like breast cancer. Transgenic mice K5ΔNßcat previously generated by our team present a constitutive activation of Wnt/ß-catenin signaling in the basal myoepithelial cell layer, resulting in focal mammary hyperplasias that progress to invasive carcinomas. Mammary lesions developed by K5ΔNßcat mice consist essentially of basal epithelial cells that, in contrast to mammary myoepithelium, do not express smooth muscle markers. METHODS: Microarray analysis was used to compare K5ΔNßcat mouse tumors to human breast tumors, mammary cancer cell lines and the tumors developed in other mouse models. Cre-Lox approach was employed to delete Myc from the mammary basal cell layer of K5ΔNßcat mice. Stem cell amplification in K5ΔNßcat mouse mammary epithelium was assessed with 3D-culture and transplantation assays. RESULTS: Histological and microarray analyses of the mammary lesions of K5ΔNßcat females revealed their high similarity to a subset of basal-like human breast tumors with squamous differentiation. As in human basal-like carcinomas, the Myc pathway appeared to be activated in the mammary lesions of K5ΔNßcat mice. We found that a basal cell population with stem/progenitor characteristics was amplified in K5ΔNßcat mouse preneoplastic glands. Finally, the deletion of Myc from the mammary basal layer of K5ΔNßcat mice not only abolished the regenerative capacity of basal epithelial cells, but, in addition, completely prevented the tumorigenesis. CONCLUSIONS: These results strongly indicate that ß-catenin-induced stem cell amplification and tumorigenesis rely ultimately on the Myc pathway activation and reinforce the hypothesis that basal stem/progenitor cells may be at the origin of a subset of basal-like breast tumors.


Asunto(s)
Neoplasias Mamarias Experimentales/metabolismo , Células Madre Neoplásicas/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , beta Catenina/metabolismo , Animales , Carcinogénesis/metabolismo , Células Epiteliales/metabolismo , Femenino , Humanos , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas c-myc/genética , Eliminación de Secuencia , Células Tumorales Cultivadas , Vía de Señalización Wnt , beta Catenina/genética
9.
Prog Neurobiol ; 227: 102483, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37327984

RESUMEN

Cytoplasmic mislocalization of the nuclear Fused in Sarcoma (FUS) protein is associated to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS accumulation is recapitulated in the frontal cortex and spinal cord of heterozygous Fus∆NLS/+ mice. Yet, the mechanisms linking FUS mislocalization to hippocampal function and memory formation are still not characterized. Herein, we show that in these mice, the hippocampus paradoxically displays nuclear FUS accumulation. Multi-omic analyses showed that FUS binds to a set of genes characterized by the presence of an ETS/ELK-binding motifs, and involved in RNA metabolism, transcription, ribosome/mitochondria and chromatin organization. Importantly, hippocampal nuclei showed a decompaction of the neuronal chromatin at highly expressed genes and an inappropriate transcriptomic response was observed after spatial training of Fus∆NLS/+ mice. Furthermore, these mice lacked precision in a hippocampal-dependent spatial memory task and displayed decreased dendritic spine density. These studies shows that mutated FUS affects epigenetic regulation of the chromatin landscape in hippocampal neurons, which could participate in FTD/ALS pathogenic events. These data call for further investigation in the neurological phenotype of FUS-related diseases and open therapeutic strategies towards epigenetic drugs.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Cromatina/metabolismo , Epigénesis Genética , Demencia Frontotemporal/genética , Hipocampo/metabolismo , Mutación , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
10.
Breast Cancer Res ; 14(1): R11, 2012 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-22247967

RESUMEN

INTRODUCTION: Identification of new therapeutic agents for breast cancer (BC) requires preclinical models that reproduce the molecular characteristics of their respective clinical tumors. In this work, we analyzed the genomic and gene expression profiles of human BC xenografts and the corresponding patient tumors. METHODS: Eighteen BC xenografts were obtained by grafting tumor fragments from patients into Swiss nude mice. Molecular characterization of patient tumors and xenografts was performed by DNA copy number analysis and gene expression analysis using Affymetrix Microarrays. RESULTS: Comparison analysis showed that 14/18 pairs of tumors shared more than 56% of copy number alterations (CNA). Unsupervised hierarchical clustering analysis showed that 16/18 pairs segregated together, confirming the similarity between tumor pairs. Analysis of recurrent CNA changes between patient tumors and xenografts showed losses in 176 chromosomal regions and gains in 202 chromosomal regions. Gene expression profile analysis showed that less than 5% of genes had recurrent variations between patient tumors and their respective xenografts; these genes largely corresponded to human stromal compartment genes. Finally, analysis of different passages of the same tumor showed that sequential mouse-to-mouse tumor grafts did not affect genomic rearrangements or gene expression profiles, suggesting genetic stability of these models over time. CONCLUSIONS: This panel of human BC xenografts maintains the overall genomic and gene expression profile of the corresponding patient tumors and remains stable throughout sequential in vivo generations. The observed genomic profile and gene expression differences appear to be due to the loss of human stromal genes. These xenografts, therefore, represent a validated model for preclinical investigation of new therapeutic agents.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Transcriptoma , Animales , Análisis por Conglomerados , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Femenino , Inestabilidad Genómica , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Trasplante Heterólogo
11.
Prog Neurobiol ; 219: 102363, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36179935

RESUMEN

Molecular mechanisms underlying cognitive deficits in Huntington's disease (HD), a striatal neurodegenerative disorder, are unknown. Here, we generated ChIPseq, 4Cseq and RNAseq data on striatal tissue of HD and control mice during striatum-dependent egocentric memory process. Multi-omics analyses showed altered activity-dependent epigenetic gene reprogramming of neuronal and glial genes regulating striatal plasticity in HD mice, which correlated with memory deficit. First, our data reveal that spatial chromatin re-organization and transcriptional induction of BDNF-related markers, regulating neuronal plasticity, were reduced since memory acquisition in the striatum of HD mice. Second, our data show that epigenetic memory implicating H3K9 acetylation, which established during late phase of memory process (e.g. during consolidation/recall) and contributed to glia-mediated, TGFß-dependent plasticity, was compromised in HD mouse striatum. Specifically, memory-dependent regulation of H3K9 acetylation was impaired at genes controlling extracellular matrix and myelination. Our study investigating the interplay between epigenetics and memory identifies H3K9 acetylation and TGFß signaling as new targets of striatal plasticity, which might offer innovative leads to improve HD.


Asunto(s)
Enfermedad de Huntington , Ratones , Animales , Enfermedad de Huntington/genética , Acetilación , Modelos Animales de Enfermedad , Cuerpo Estriado , Factor de Crecimiento Transformador beta
12.
Cancer Lett ; 543: 215765, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35680072

RESUMEN

Neuroendocrine tumors constitute a heterogeneous group of tumors arising from hormone-secreting cells and are generally associated with a dysfunction of secretion. Pheochromocytoma (Pheo) is a neuroendocrine tumor that develops from chromaffin cells of the adrenal medulla, and is responsible for an excess of catecholamine secretion leading to severe clinical symptoms such as hypertension, elevated stroke risk and various cardiovascular complications. Surprisingly, while the hypersecretory activity of Pheo is well known to pathologists and clinicians, it has never been carefully explored at the cellular and molecular levels. In the present study, we have combined catecholamine secretion measurement by carbon fiber amperometry on human tumor cells directly cultured from freshly resected Pheos, with the analysis by mass spectrometry of the exocytotic proteins differentially expressed between the tumor and the matched adjacent non-tumor tissue. In most patients, catecholamine secretion recordings from single Pheo cells revealed a higher number of exocytic events per cell associated with faster kinetic parameters. Accordingly, we unravel significant tumor-associated modifications in the expression of key proteins involved in different steps of the calcium-regulated exocytic pathway. Altogether, our findings indicate that dysfunction of the calcium-regulated exocytosis at the level of individual Pheo cell is a cause of the tumor-associated hypersecretion of catecholamines.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Médula Suprarrenal , Feocromocitoma , Neoplasias de las Glándulas Suprarrenales/metabolismo , Médula Suprarrenal/metabolismo , Calcio , Calcio de la Dieta , Catecolaminas/metabolismo , Exocitosis , Humanos , Feocromocitoma/metabolismo
13.
BMC Cancer ; 10: 222, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20492709

RESUMEN

BACKGROUND: The distinction between primary and secondary ovarian tumors may be challenging for pathologists. The purpose of the present work was to develop genomic and transcriptomic tools to further refine the pathological diagnosis of ovarian tumors after a previous history of breast cancer. METHODS: Sixteen paired breast-ovary tumors from patients with a former diagnosis of breast cancer were collected. The genomic profiles of paired tumors were analyzed using the Affymetrix GeneChip Mapping 50 K Xba Array or Genome-Wide Human SNP Array 6.0 (for one pair), and the data were normalized with ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) algorithm or Partek Genomic Suite, respectively. The transcriptome of paired samples was analyzed using Affymetrix GeneChip Human Genome U133 Plus 2.0 Arrays, and the data were normalized with gc-Robust Multi-array Average (gcRMA) algorithm. A hierarchical clustering of these samples was performed, combined with a dataset of well-identified primary and secondary ovarian tumors. RESULTS: In 12 of the 16 paired tumors analyzed, the comparison of genomic profiles confirmed the pathological diagnosis of primary ovarian tumor (n = 5) or metastasis of breast cancer (n = 7). Among four cases with uncertain pathological diagnosis, genomic profiles were clearly distinct between the ovarian and breast tumors in two pairs, thus indicating primary ovarian carcinomas, and showed common patterns in the two others, indicating metastases from breast cancer. In all pairs, the result of the transcriptomic analysis was concordant with that of the genomic analysis. CONCLUSIONS: In patients with ovarian carcinoma and a previous history of breast cancer, SNP array analysis can be used to distinguish primary and secondary ovarian tumors. Transcriptomic analysis may be used when primary breast tissue specimen is not available.


Asunto(s)
Neoplasias de la Mama/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Pruebas Genéticas/métodos , Neoplasias Primarias Secundarias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Ováricas/genética , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Algoritmos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Análisis por Conglomerados , Diagnóstico Diferencial , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Primarias Secundarias/diagnóstico , Neoplasias Primarias Secundarias/patología , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/secundario , Valor Predictivo de las Pruebas , Factores de Tiempo
14.
BMC Genomics ; 10: 246, 2009 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-19470167

RESUMEN

BACKGROUND: For more than a decade, microarrays have been a powerful and widely used tool to explore the transcriptome of biological systems. However, the amount of biological material from cell sorting or laser capture microdissection is much too small to perform microarray studies. To address this issue, RNA amplification methods have been developed to generate sufficient targets from picogram amounts of total RNA to perform microarray hybridisation. RESULTS: In this study, four commercial protocols for amplification of picograms amounts of input RNA for microarray expression profiling were evaluated and compared. The quantitative and qualitative performances of the methods were assessed. Microarrays were hybridised with the amplified targets and the amplification protocols were compared with respect to the quality of expression profiles, reproducibility within a concentration range of input RNA, and sensitivity. The results demonstrate significant differences between these four methods. CONCLUSION: In our hands, the WT-Ovation pico system proposed by Nugen appears to be the most suitable for RNA amplification. This comparative study will be useful to scientists needing to choose an amplification method to carry out microarray experiments involving samples comprising only a few cells and generating picogram amounts of RNA.


Asunto(s)
Perfilación de la Expresión Génica , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN/aislamiento & purificación , Línea Celular , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Bioinformatics ; 24(6): 768-74, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18252739

RESUMEN

MOTIVATION: Affymetrix SNP arrays can be used to determine the DNA copy number measurement of 11 000-500 000 SNPs along the genome. Their high density facilitates the precise localization of genomic alterations and makes them a powerful tool for studies of cancers and copy number polymorphism. Like other microarray technologies it is influenced by non-relevant sources of variation, requiring correction. Moreover, the amplitude of variation induced by non-relevant effects is similar or greater than the biologically relevant effect (i.e. true copy number), making it difficult to estimate non-relevant effects accurately without including the biologically relevant effect. RESULTS: We addressed this problem by developing ITALICS, a normalization method that estimates both biological and non-relevant effects in an alternate, iterative manner, accurately eliminating irrelevant effects. We compared our normalization method with other existing and available methods, and found that ITALICS outperformed these methods for several in-house datasets and one public dataset. These results were validated biologically by quantitative PCR. AVAILABILITY: The R package ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) has been submitted to Bioconductor.


Asunto(s)
Algoritmos , Inteligencia Artificial , Mapeo Cromosómico/métodos , Dosificación de Gen/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple/genética , Programas Informáticos , Secuencia de Bases , Análisis Mutacional de ADN/métodos , Perfilación de la Expresión Génica/métodos , Cadenas de Markov , Datos de Secuencia Molecular , Reconocimiento de Normas Patrones Automatizadas/métodos
16.
Cancers (Basel) ; 11(3)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901876

RESUMEN

This study was designed to monitor circulating tumor DNA (ctDNA) levels during perioperative chemotherapy in patients with non-metastatic gastric adenocarcinoma. Plasma samples were prospectively collected in patients undergoing perioperative chemotherapy for non-metastatic gastric adenocarcinoma (excluding T1N0) prior to the initiation of perioperative chemotherapy, before and after surgery (NCT02220556). In each patient, mutations retrieved by targeted next-generation sequencing (NGS) on tumor samples were then tracked in circulating cell-free DNA from 4 mL of plasma by droplet digital PCR. Thirty-two patients with a diagnosis of non-metastatic gastric adenocarcinoma were included. A trackable mutation was identified in the tumor in 20 patients, seven of whom experienced relapse during follow-up. ctDNA was detectable in four patients (N = 4/19, sensitivity: 21%; 95% confidence interval CI = 8.5⁻43%, no baseline plasma sample was available for one patient), with a median allelic frequency (MAF) of 1.6% (range: 0.8⁻2.3%). No patient with available plasma samples (N = 0/18) had detectable ctDNA levels before surgery. After surgery, one of the 13 patients with available plasma samples had a detectable ctDNA level with a low allelic frequency (0.7%); this patient experienced a very short-term distant relapse only 3 months after surgery. No ctDNA was detected after surgery in the other four patients with available plasma samples who experienced a later relapse (median = 14.4, range: 9.3⁻26 months). ctDNA monitoring during preoperative chemotherapy and after surgery does not appear to be a useful tool in clinical practice for non-metastatic gastric cancer to predict the efficacy of chemotherapy and subsequent relapse, essentially due to the poor sensitivity of ctDNA detection.

17.
Cells ; 8(6)2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31142037

RESUMEN

The management of patients with colorectal cancer (CRC) and potentially resectable liver metastases (LM) requires quick assessment of mutational status and of response to pre-operative systemic therapy. In a prospective phase II trial (NCT01442935), we investigated the clinical validity of circulating tumor cell (CTC) and circulating tumor DNA (ctDNA) detection. CRC patients with potentially resectable LM were treated with first-line triplet or doublet chemotherapy combined with targeted therapy. CTC (Cellsearch®) and Kirsten RAt Sarcoma (KRAS) ctDNA (droplet digital polymerase chain reaction (PCR)) levels were assessed at inclusion, after 4 weeks of therapy and before LM surgery. 153 patients were enrolled. The proportion of patients with high CTC counts (≥3 CTC/7.5mL) decreased during therapy: 19% (25/132) at baseline, 3% (3/108) at week 4 and 0/57 before surgery. ctDNA detection sensitivity at baseline was 91% (N=42/46) and also decreased during treatment. Interestingly, persistently detectable KRAS ctDNA (p=0.01) at 4 weeks was associated with a lower R0/R1 LM resection rate. Among patients who had a R0/R1 LM resection, those with detectable ctDNA levels before liver surgery had a shorter overall survival (p<0.001). In CRC patients with limited metastatic spread, ctDNA could be used as liquid biopsy tool. Therefore, ctDNA detection could help to select patients eligible for LM resection.


Asunto(s)
ADN Tumoral Circulante/sangre , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/patología , Células Neoplásicas Circulantes/patología , Adulto , Anciano , Neoplasias Colorrectales/cirugía , Humanos , Estimación de Kaplan-Meier , Biopsia Líquida , Persona de Mediana Edad , Mutación/genética , Metástasis de la Neoplasia , Estudios Prospectivos , Proteínas Proto-Oncogénicas p21(ras)/genética , Resultado del Tratamiento
18.
J Vis Exp ; (139)2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30320738

RESUMEN

Droplet digital polymerase chain reaction (ddPCR) is a highly sensitive quantitative polymerase chain reaction (PCR) method based on sample fractionation into thousands of nano-sized water-in-oil individual reactions. Recently, ddPCR has become one of the most accurate and sensitive tools for circulating tumor DNA (ctDNA) detection. One of the major limitations of the standard ddPCR technique is the restricted number of mutations that can be screened per reaction, as specific hydrolysis probes recognizing each possible allelic version are required. An alternative methodology, the drop-off ddPCR, increases throughput, since it requires only a single pair of probes to detect and quantify potentially all genetic alterations in the targeted region. Drop-off ddPCR displays comparable sensitivity to conventional ddPCR assays with the advantage of detecting a greater number of mutations in a single reaction. It is cost-effective, conserves precious sample material, and can also be used as a discovery tool when mutations are not known a priori.


Asunto(s)
ADN Tumoral Circulante/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Humanos , Mutación
19.
PLoS One ; 12(10): e0186562, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29084234

RESUMEN

Circulating tumor cells (CTCs) isolated from blood can be probed for the expression of treatment targets. Immunofluorescence is often used for both the enumeration of CTC and the determination of protein expression levels related to treatment targets. Accurate and reproducible assessment of such treatment target expression levels is essential for their use in the clinic. To enable this, an open source image analysis program named ACCEPT was developed in the EU-FP7 CTCTrap and CANCER-ID programs. Here its application is shown on a retrospective cohort of 132 metastatic breast cancer patients from which blood samples were processed by CellSearch® and stained for HER-2 expression as additional marker. Images were digitally stored and reviewers identified a total of 4084 CTCs. CTC's HER-2 expression was determined in the thumbnail images by ACCEPT. 150 of these images were selected and sent to six independent investigators to score the HER-2 expression with and without ACCEPT. Concordance rate of the operators' scoring results for HER-2 on CTCs was 30% and could be increased using the ACCEPT tool to 51%. Automated assessment of HER-2 expression by ACCEPT on 4084 CTCs of 132 patients showed 8 (6.1%) patients with all CTCs expressing HER-2, 14 (10.6%) patients with no CTC expressing HER-2 and 110 (83.3%) patients with CTCs showing a varying HER-2 expression level. In total 1576 CTCs were determined HER-2 positive. We conclude that the use of image analysis enables a more reproducible quantification of treatment targets on CTCs and leads the way to fully automated and reproducible approaches.


Asunto(s)
Neoplasias de la Mama/sangre , Células Neoplásicas Circulantes/metabolismo , Receptor ErbB-2/metabolismo , Femenino , Humanos
20.
Eur J Cancer ; 63: 97-104, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27289552

RESUMEN

There is increasing evidence that breast cancer evolves over time under the selection pressure of systemic treatment. Today, treatment decisions in early breast cancer are based on primary tumour characteristics without considering the disease evolution. Chemoresistant micrometastatic disease is poorly characterised and thus it is not used in current clinical practice as a tool to personalise treatment approaches. The detection of chemoresistant circulating tumour cells (CTCs) has been shown to be associated with worse prognosis in early breast cancer. The ongoing Treat CTC trial is the first international, liquid biopsy-based trial evaluating the concept of targeting chemoresistant minimal residual disease: detection of CTCs following adjuvant chemotherapy (adjuvant cohort) or neoadjuvant chemotherapy in patients who did not achieve pathological complete response (neoadjuvant cohort). This article presents the rational and design of this trial and the results of the pilot phase after 350 patients have been screened and provides insights that might provide information for future trials using the liquid biopsy approach as a tool towards precision medicine (NCT01548677).


Asunto(s)
Biopsia/métodos , Neoplasias de la Mama/diagnóstico , Células Neoplásicas Circulantes/patología , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/análisis , Neoplasias de la Mama/tratamiento farmacológico , Ensayos Clínicos como Asunto , Femenino , Humanos , Persona de Mediana Edad , Neoplasia Residual , Proyectos Piloto , Valor Predictivo de las Pruebas , Pronóstico , Trastuzumab/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA