RESUMEN
We compared the efficacy of neurovascular coupling and substrate supply in cerebral cortex during severe metabolic challenges in transgenic Alzheimer's [CVN-AD] and control [C57Bl/6] mice, to evaluate the hypothesis that metabolic insufficiency is a critical component of degeneration leading to dementia. We analyzed cerebral blood flow and metabolic responses to spreading depression (induced by K+ applied to the cortex) and anoxia across aging in CVN-AD + C57Bl/6 genotypes. In the CVN-AD genotype progression to histological and cognitive hallmarks of dementia is a stereotyped function of age. We correlated physiology and imaging of the cortex with the blood flow responses measured with laser doppler probes. The results show that spreading depression resulted in a hyperemic blood flow response that was dramatically reduced (24% in amplitude, 70% in area) in both middle-aged and aged CVN-AD mice compared to C57Bl/6 age-matched controls. However, spreading depression amplitude and conduction velocity (≈6 mm/min) did not differ among groups. Anoxia (100% N2 ) showed significantly decreased (by 62%) reactive blood flow and autoregulation in aged AD-CVN mice compared to aged control animals. Significantly reduced neurovascular coupling occurred prematurely with aging in CVN-AD mice. Abbreviated physiological hyperemia and decreased resilience to anoxia may enhance early-onset metabolic deficiency through decreased substrate supply to the brain. Metabolic deficiency may contribute significantly to the degeneration associated with dementia as a function of aging and regions of the brain involved.
Asunto(s)
Circulación Cerebrovascular/fisiología , Depresión/fisiopatología , Modelos Animales de Enfermedad , Hipoxia/fisiopatología , Ratones Endogámicos C57BL , Acoplamiento Neurovascular , Envejecimiento , Enfermedad de Alzheimer/patología , Animales , Femenino , Hemodinámica/fisiología , Humanos , Masculino , RatonesRESUMEN
PURPOSE: Absolute MR temperature measurements are currently difficult because they require precalibration procedures specific for tissue types and conditions. Reference of the lipid-dissolved 129 Xe resonance frequency to temperature-insensitive methylene protons (rLDX) has been proposed to remove the effect of macro- and microscopic susceptibility gradients to obtain absolute temperature information. The scope of this work is to evaluate the rLDX chemical shift (CS) dependence on lipid composition to estimate the precision of absolute temperature measurements in lipids. METHODS: Neat triglycerides, vegetable oils, and samples of freshly excised human and rodent adipose tissue (AT) are prepared under 129 Xe atmosphere and studied using high-resolution NMR. The rLDX CS is measured as a function of temperature. 1 H spectra are also acquired and the consistency of methylene-referenced water proton and rLDX CS values are compared in human AT. RESULTS: Although rLDX CS shows a dependence on lipid composition, in human and rodent AT samples the rLDX shows consistent CS values with a similar temperature dependence (-0.2058 ± 0.0010) ppm/°C × T (°C) + (200.15 ± 0.03) ppm, enabling absolute temperature measurements with an accuracy of 0.3°C. Methylene-referenced water CS values present variations of up to 4°C, even under well-controlled conditions. CONCLUSIONS: The rLDX can be used to obtain accurate absolute temperature measurements in AT, opening new opportunities for hyperpolarized 129 Xe MR to measure tissue absolute temperature.
Asunto(s)
Lípidos/química , Imagen por Resonancia Magnética , Xenón , Tejido Adiposo/metabolismo , Animales , Calibración , Humanos , Aceites de Plantas/química , Protones , Ratas , Valores de Referencia , Reproducibilidad de los Resultados , Temperatura , Triglicéridos/química , Agua/químicaRESUMEN
PURPOSE: To investigate the temperature dependence of the resonance frequency of lipid-dissolved xenon (LDX) and to assess the accuracy of LDX-based MR thermometry. METHODS: The chemical shift temperature dependence of water protons, methylene protons, and LDX was measured from samples containing tissues with varying fat contents using a high-resolution NMR spectrometer. LDX results were then used to acquire relative and absolute temperature maps in vivo and the results were compared with PRF-based MR thermometry. RESULTS: The temperature dependence of proton resonance frequency (PRF) is strongly affected by the specific distribution of water and fat. A redistribution of water and fat compartments can reduce the apparent temperature dependence of the water chemical shift from -0.01 ppm/°C to -0.006 ppm, whereas the LDX chemical shift shows a consistent temperature dependence of -0.21 ppm/°C. The use of the methylene protons resonance frequency as internal reference improves the accuracy of LDX-based MR thermometry, but degrades that of PRF-based MR thermometry, as microscopic susceptibility gradients affected lipid and water spins differently. CONCLUSION: The LDX resonance frequency, with its higher temperature dependence, provides more accurate and precise temperature measurements, both in vitro and in vivo. More importantly, the resonance frequency of nearby methylene protons can be used to extract absolute temperature information. Magn Reson Med 78:1070-1079, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Termometría/métodos , Isótopos de Xenón/química , Tejido Adiposo/diagnóstico por imagen , Animales , Temperatura Corporal/fisiología , Simulación por Computador , Femenino , Ratones , Ratones Obesos , Protones , Isótopos de Xenón/metabolismoRESUMEN
PURPOSE: 129 Xe interacts with biological media to exhibit chemical shifts exceeding 200 ppm that report on physiology and pathology. Extracting this functional information requires shifts to be measured precisely. Historically, shifts have been reported relative to the gas-phase resonance originating from pulmonary airspaces. However, this frequency is not fixed-it is affected by bulk magnetic susceptibility, as well as Xe-N2 , Xe-Xe, and Xe-O2 interactions. In this study, we addressed this by introducing a robust method to determine the 0 ppm 129 Xe reference from in vivo data. METHODS: Respiratory-gated hyperpolarized 129 Xe spectra from the gas- and dissolved-phases were acquired in four mice at 2T from multiple axial slices within the thoracic cavity. Complex spectra were then fitted in the time domain to identify peaks. RESULTS: Gas-phase 129 Xe exhibited two distinct resonances corresponding to 129 Xe in conducting airways (varying from -0.6 ± 0.2 to 1.3 ± 0.3 ppm) and alveoli (relatively stable, at -2.2 ± 0.1 ppm). Dissolved-phase 129 Xe exhibited five reproducible resonances in the thorax at 198.4 ± 0.4, 195.5 ± 0.4, 193.9 ± 0.2, 191.3 ± 0.2, and 190.7 ± 0.3 ppm. CONCLUSION: The alveolar 129 Xe resonance exhibits a stable frequency across all mice. Therefore, it can provide a reliable in vivo reference frequency by which to characterize other spectroscopic shifts. Magn Reson Med 77:1438-1445, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/normas , Alveolos Pulmonares/química , Isótopos de Xenón/análisis , Isótopos de Xenón/normas , Animales , Ratones , Ratones Endogámicos BALB C , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Isótopos de Xenón/administración & dosificaciónRESUMEN
Mycoplasma pneumoniae is an extracellular pathogen that colonizes mucosal surfaces of the respiratory tract and is associated with asthma exacerbations. Previous reports demonstrate that surfactant protein-A (SP-A) binds live M. pneumoniae and mycoplasma membrane fractions (MMF) with high affinity. Humans express a repertoire of single-amino acid genetic variants of SP-A that may be associated with lung disease, and our findings demonstrate that allelic differences in SP-A2 (Gln223Lys) affect the binding to MMF. We show that SP-A(-/-) mice are more susceptible to MMF exposure and have significant increases in mucin production and neutrophil recruitment. Novel humanized SP-A2-transgenic mice harboring the hSP-A2 223K allele exhibit reduced neutrophil influx and mucin production in the lungs when challenged with MMF compared with SP-A(-/-) mice. Conversely, mice expressing hSP-A2 223Q have increased neutrophil influx and mucin production that are similar to SP-A(-/-) mice. Using tracheal epithelial cell cultures, we show that enhanced mucin production to MMF occurs in the absence of SP-A and is not dependent upon neutrophil recruitment. Increased phosphorylation of the epidermal growth factor receptor (EGFR) was evident in the lungs of MMF-challenged mice when SP-A was absent. Pharmacologic inhibition of EGFR prior to MMF challenge dramatically reduced mucin production in SP-A(-/-) mice. These findings suggest a protective role for SP-A in limiting MMF-stimulated mucin production that occurs through interference with EGFR-mediated signaling. SP-A interaction with the EGFR signaling pathway appears to occur in an allele-specific manner that may have important implications for SP-A polymorphisms in human diseases.
Asunto(s)
Variación Genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Mycoplasma pneumoniae/inmunología , Mycoplasma pneumoniae/metabolismo , Neumonía por Mycoplasma/genética , Neumonía por Mycoplasma/inmunología , Proteína A Asociada a Surfactante Pulmonar/genética , Animales , Membrana Celular/inmunología , Membrana Celular/metabolismo , Quimiotaxis/inmunología , Receptores ErbB/metabolismo , Femenino , Expresión Génica , Orden Génico , Marcación de Gen , Vectores Genéticos/genética , Humanos , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Mucina 5AC/genética , Mucina 5AC/metabolismo , Moco/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Fosforilación , Neumonía por Mycoplasma/metabolismo , Unión Proteica , Proteína A Asociada a Surfactante Pulmonar/metabolismoRESUMEN
Itraconazole is a triazole agent that is routinely used for treatment of nail infections and other fungal infections. Recent studies indicate that itraconazole can also inhibit the growth of basal cell carcinoma (BCC) through suppression of the Sonic Hedgehog (SHH) signaling pathway. In this study, polyglycolic acid microneedle arrays and stainless steel microneedle arrays were used for transdermal delivery of itraconazole to a human BCC model which was regenerated on mice. One-by-four arrays of 642-µm-long polyglycolic acid microneedles with sharp tips were prepared using injection molding and drawing lithography. Arrays of 85 stainless steel 800-µm-tall microneedles attached to syringes were obtained for comparison purposes. Skin grafts containing devitalized split-thickness human dermis that had been seeded with human keratinocytes transduced to express human SHH protein were sutured to the skin of immunodeficient mice. Mice with this human BCC model were treated daily for 2 weeks with itraconazole dissolved in 60% dimethylsulfoxane and 40% polyethylene glycol-400 solution; transdermal administration of the itraconazole solution was facilitated by either four 1 × 4 polyglycolic acid microneedle arrays or stainless steel microneedle arrays. The epidermal tissues treated with polyglycolic acid microneedles or stainless steel microneedles were markedly thinner than that of the control (untreated) graft tissue. These preliminary results indicate that microneedles may be used to facilitate transdermal delivery of itraconazole for localized treatment of BCC.
RESUMEN
A variety of pulmonary pathologies, in particular interstitial lung diseases, are characterized by thickening of the pulmonary blood-gas barrier, and this thickening results in reduced gas exchange. Such diffusive impairment is challenging to quantify spatially, because the distributions of the metabolically relevant gases (CO2 and O2) cannot be detected directly within the lungs. Hyperpolarized (HP) (129)Xe is a promising surrogate for these metabolic gases, because MR spectroscopy and imaging allow gaseous alveolar (129)Xe to be detected separately from (129)Xe dissolved in the red blood cells (RBCs) and the adjacent tissues, which comprise blood plasma and lung interstitium. Because (129)Xe reaches the RBCs by diffusing across the same barrier tissues (blood plasma and interstitium) as O2, barrier thickening will delay (129)Xe transit and, thus, reduce RBC-specific (129)Xe MR signal. Here we have exploited these properties to generate 3D, MR images of (129)Xe uptake by the RBCs in two groups of rats. In the experimental group, unilateral fibrotic injury was generated prior to imaging by instilling bleomycin into one lung. In the control group, a unilateral sham instillation of saline was performed. Uptake of (129)Xe by the RBCs, quantified as the fraction of RBC signal relative to total dissolved (129)Xe signal, was significantly reduced (P = 0.03) in the injured lungs of bleomycin-treated animals. In contrast, no significant difference (P = 0.56) was observed between the saline-treated and untreated lungs of control animals. Together, these results indicate that 3D MRI of HP (129)Xe dissolved in the pulmonary tissues can provide useful biomarkers of impaired diffusive gas exchange resulting from fibrotic thickening.
Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Fibrosis Pulmonar/diagnóstico , Animales , Bleomicina , Modelos Animales de Enfermedad , Eritrocitos/metabolismo , Femenino , Pulmón/patología , Fibrosis Pulmonar/patología , Ratas Endogámicas F344 , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Cloruro de Sodio , Análisis Espectral , Isótopos de XenónRESUMEN
[This corrects the article DOI: 10.3389/fonc.2022.782877.].
RESUMEN
Outer retinal degenerations, including age-related macular degeneration (AMD), are characterized by photoreceptor and retinal pigment epithelium (RPE) atrophy. In these blinding diseases, macrophages accumulate at atrophic sites, but their ontogeny and niche specialization remain poorly understood, especially in humans. We uncovered a unique profile of microglia, marked by galectin-3 upregulation, at atrophic sites in mouse models of retinal degeneration and human AMD. In disease models, conditional deletion of galectin-3 in microglia led to phagocytosis defects and consequent augmented photoreceptor death, RPE damage, and vision loss, indicating protective roles. Mechanistically, Trem2 signaling orchestrated microglial migration to atrophic sites and induced galectin-3 expression. Moreover, pharmacologic Trem2 agonization led to heightened protection but in a galectin-3-dependent manner. In elderly human subjects, we identified this highly conserved microglial population that expressed galectin-3 and Trem2. This population was significantly enriched in the macular RPE-choroid of AMD subjects. Collectively, our findings reveal a neuroprotective population of microglia and a potential therapeutic target for mitigating retinal degeneration.
Asunto(s)
Galectina 3 , Glicoproteínas de Membrana , Receptores Inmunológicos , Degeneración Retiniana , Anciano , Animales , Humanos , Ratones , Atrofia , Galectina 3/genética , Macrófagos , Glicoproteínas de Membrana/genética , Microglía , Receptores Inmunológicos/genéticaRESUMEN
Cystic Fibrosis (CF) is a chronic lung disease characterized by chronic neutrophilic airway inflammation and increased levels of neutrophil elastase (NE) in the airways. We have previously reported that NE treatment triggers cell cycle arrest. Cell cycle arrest can lead to senescence, a complete loss of replicative capacity. Importantly, senescent cells can be proinflammatory and would perpetuate CF chronic inflammation. By immunohistochemistry, we evaluated whether airway sections from CF and control subjects expressed markers of senescence, including p16(INK4a) (p16), a cyclin-dependent kinase inhibitor, phospho-Histone H2A.X (γH2A.X), and phospho-checkpoint 2 kinase (phospho-Chk2), which are also DNA damage response markers. Compared with airway epithelium from control subjects, CF airway epithelium had increased levels of expression of all three senescence markers. We hypothesized that the high load of NE in the CF airway triggers epithelial senescence by upregulating expression of p16, which inhibits cyclin-dependent kinase 4 (CDK4). Normal human bronchial epithelial (NHBE) cells, cultured in air-liquid interface were treated with NE (0, 200, and 500 nM) to induce visible injury. Total cell lysates were collected and evaluated by Western analysis for p16 protein expression and CDK4 kinase activity. NE significantly increased p16 expression and decreased CDK4 kinase activity in NHBE cells. These results support the concept that NE triggers expression of senescence markers in CF airway epithelial cells.
Asunto(s)
Senescencia Celular , Fibrosis Quística/metabolismo , Mucosa Respiratoria/metabolismo , Biomarcadores/metabolismo , Bronquios/patología , Estudios de Casos y Controles , Células Cultivadas , Quinasa de Punto de Control 2 , Quinasa 4 Dependiente de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/patología , Daño del ADN , Histonas/metabolismo , Humanos , Elastasa de Leucocito/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Mucosa Respiratoria/fisiopatología , Telómero/genética , Telómero/metabolismo , Regulación hacia ArribaRESUMEN
The detection of cerebral blood flow (CBF) responses to various forms of neuronal activation is critical for understanding dynamic brain function and variations in the substrate supply to the brain. This paper describes a protocol for measuring CBF responses to transcranial alternating current stimulation (tACS). Dose-response curves are estimated both from the CBF change occurring with tACS (mA) and from the intracranial electric field (mV/mm). We estimate the intracranial electrical field based on the different amplitudes measured by glass microelectrodes within each side of the brain. In this paper, we describe the experimental setup, which involves using either bilateral laser Doppler (LD) probes or laser speckle imaging (LSI) to measure the CBF; as a result, this setup requires anesthesia for the electrode placement and stability. We present a correlation between the CBF response and the current as a function of age, showing a significantly larger response at higher currents (1.5 mA and 2.0 mA) in young control animals (12-14 weeks) compared to older animals (28-32 weeks) (p < 0.005 difference). We also demonstrate a significant CBF response at electrical field strengths <5 mV/mm, which is an important consideration for eventual human studies. These CBF responses are also strongly influenced by the use of anesthesia compared to awake animals, the respiration control (i.e., intubated vs. spontaneous breathing), systemic factors (i.e., CO2), and local conduction within the blood vessels, which is mediated by pericytes and endothelial cells. Likewise, more detailed imaging/recording techniques may limit the field size from the entire brain to only a small region. We describe the use of extracranial electrodes for applying tACS stimulation, including both homemade and commercial electrode designs for rodents, the concurrent measurement of the CBF and intracranial electrical field using bilateral glass DC recording electrodes, and the imaging approaches. We are currently applying these techniques to implement a closed-loop format for augmenting the CBF in animal models of Alzheimer's disease and stroke.
Asunto(s)
Circulación Cerebrovascular , Células Endoteliales , Ratones , Humanos , Animales , Recién Nacido , Circulación Cerebrovascular/fisiología , Encéfalo , MicroelectrodosRESUMEN
Degenerative diseases of the outer retina, including age-related macular degeneration (AMD), are characterized by atrophy of photoreceptors and retinal pigment epithelium (RPE). In these blinding diseases, macrophages are known to accumulate ectopically at sites of atrophy, but their ontogeny and functional specialization within this atrophic niche remain poorly understood, especially in the human context. Here, we uncovered a transcriptionally unique profile of microglia, marked by galectin-3 upregulation, at atrophic sites in mouse models of retinal degeneration and in human AMD. Using disease models, we found that conditional deletion of galectin-3 in microglia led to defects in phagocytosis and consequent augmented photoreceptor death, RPE damage and vision loss, suggestive of a protective role. Mechanistically, Trem2 signaling orchestrated the migration of microglial cells to sites of atrophy, and there, induced galectin-3 expression. Moreover, pharmacologic Trem2 agonization led to heightened protection, but only in a galectin-3-dependent manner, further signifying the functional interdependence of these two molecules. Likewise in elderly human subjects, we identified a highly conserved population of microglia at the transcriptomic, protein and spatial levels, and this population was enriched in the macular region of postmortem AMD subjects. Collectively, our findings reveal an atrophy-associated specialization of microglia that restricts the progression of retinal degeneration in mice and further suggest that these protective microglia are conserved in AMD.
RESUMEN
RATIONALE: Invasive cell phenotypes have been demonstrated in malignant transformation, but not in other diseases, such as asthma. Cellular invasiveness is thought to be mediated by transforming growth factor (TGF)-ß1 and matrix metalloproteinases (MMPs). IL-13 is a key T(H)2 cytokine that directs many features of airway remodeling through TGF-ß1 and MMPs. OBJECTIVES: We hypothesized that, in human asthma, IL-13 stimulates increased airway fibroblast invasiveness via TGF-ß1 and MMPs in asthma compared with normal controls. METHODS: Fibroblasts were cultured from endobronchial biopsies in 20 subjects with mild asthma (FEV(1): 90 ± 3.6% pred) and 17 normal control subjects (FEV(1): 102 ± 2.9% pred) who underwent bronchoscopy. Airway fibroblast invasiveness was investigated using Matrigel chambers. IL-13 or IL-13 with TGF-ß1 neutralizing antibody or pan-MMP inhibitor (GM6001) was added to the lower chamber as a chemoattractant. Flow cytometry and immunohistochemistry were performed in a subset of subjects to evaluate IL-13 receptor levels. MEASUREMENTS AND MAIN RESULTS: IL-13 significantly stimulated invasion in asthmatic airway fibroblasts, compared with normal control subjects. Inhibitors of both TGF-ß1 and MMPs blocked IL-13-induced invasion in asthma, but had no effect in normal control subjects. At baseline, in airway tissue, IL-13 receptors were expressed in significantly higher levels in asthma, compared with normal control subjects. In airway fibroblasts, baseline IL-13Rα2 was reduced in asthma compared with normal control subjects. CONCLUSIONS: IL-13 potentiates airway fibroblast invasion through a mechanism involving TGF-ß1 and MMPs. IL-13 receptor subunits are differentially expressed in asthma. These effects may result in IL-13-directed airway remodeling in asthma.
Asunto(s)
Asma/patología , Fibroblastos/fisiología , Interleucina-13/fisiología , Adulto , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Bronquios/patología , Células Cultivadas , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Masculino , Metaloproteinasas de la Matriz/fisiología , Receptores de Interleucina-13/análisis , Factor de Crecimiento Transformador beta1/fisiologíaRESUMEN
RATIONALE: Previously, we demonstrated a candidate region for susceptibility to airspace enlargement on mouse chromosome 5. However, the specific candidate genes within this region accounting for emphysema-like changes remain unrecognized. c-Kit is a receptor tyrosine kinase within this candidate gene region that has previously been recognized to contribute to the survival, proliferation, and differentiation of hematopoietic stem cells. Increases in the percentage of cells expressing c-Kit have previously been associated with protection against injury-induced emphysema. OBJECTIVES: Determine whether genetic variants of c-Kit are associated with spontaneous airspace enlargement. METHODS: Perform single-nucleotide polymorphism association studies in the mouse strains at the extremes of airspace enlargement phenotype for variants in c-Kit tyrosine kinase. Characterize mice bearing functional variants of c-Kit compared with wild-type controls for the development of spontaneous airspace enlargement. Epithelial cell proliferation was measured in culture. MEASUREMENTS AND MAIN RESULTS: Upstream regulatory single-nucleotide polymorphisms in the divergent mouse strains were associated with the lung compliance difference observed between the extreme strains. c-Kit mutant mice (Kit(W-sh)/(W-sh)), when compared with genetic controls, developed altered lung histology, increased total lung capacity, increased residual volume, and increased lung compliance that persist into adulthood. c-Kit inhibition with imatinib attenuated in vitro proliferation of cells expressing epithelial cell adhesion molecule. CONCLUSIONS: Our findings indicate that c-Kit sustains and/or maintains normal alveolar architecture in the lungs of mice. In vitro data suggest that c-Kit can regulate epithelial cell clonal expansion. The precise mechanisms that c-Kit contributes to the development of airspace enlargement and increased lung compliance remain unclear and warrants further investigation.
Asunto(s)
Enfisema/prevención & control , Proteínas Proto-Oncogénicas c-kit/fisiología , Alveolos Pulmonares/fisiología , Animales , Enfisema/patología , Predisposición Genética a la Enfermedad , Pulmón/fisiopatología , Rendimiento Pulmonar/fisiología , Ratones , Ratones Endogámicos/fisiología , Ratones Mutantes , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas c-kit/genética , Alveolos Pulmonares/citologíaRESUMEN
Trachealess (Trh) is a PAS domain transcription factor regulating Drosophila tracheogenesis. No other Trh homolog has been associated with a respiratory phenotype. Seeking homolog(s) regulating lung development, we screened murine genomic DNA using trh oligonucleotides, identifying only Npas3. Npas3 mRNA peaks in lung from E10.5 to E13.5, verified by sequencing, with immunostaining in airway epithelial cells. Npas3-null mice have reduced lung branching morphogenesis but are viable prenatally. Npas3-null newborns die in respiratory distress, with diminished alveolarization, decreased Shh, Fgf9, Fgf10, and Bmp4 mRNAs, and increased Spry2, consistent with reduced FGF signaling. Exogenous FGF10 rescues branching morphogenesis in Npas3-null lungs. In promoter reporter assays, NPAS3 directly upregulates Shh and represses Spry2. Npas3(+/-) mice have a milder lung phenotype, surviving postnatally, but develop emphysema and airways hyperreactivity. Therefore, absence of a developmentally expressed transcription factor can alter downstream gene expression and multiple signaling pathways in organogenesis. NPAS3 haploinsufficiency may also lead to emphysema and asthma.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Pulmón/metabolismo , Morfogénesis/genética , Animales , Secuencia de Bases , Western Blotting , Proteínas de Drosophila/genética , Perfilación de la Expresión Génica , Inmunohistoquímica , Pulmón/crecimiento & desarrollo , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Oligonucleótidos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Factores de Transcripción/genéticaRESUMEN
BACKGROUND: The characteristics of human asthma are chronic inflammation and airway remodeling. Hyaluronan, a major extracellular matrix component, accumulates during inflammatory lung diseases, including asthma. Hyaluronan fragments stimulate macrophages to produce inflammatory cytokines. We hypothesized that hyaluronan and its receptors would play a role in human asthma. OBJECTIVE: To investigate the role of hyaluronan and hyaluronan-binding proteins in human asthma. METHODS: Twenty-one subjects with asthma and 25 healthy control subjects underwent bronchoscopy with endobronchial biopsy and bronchoalveolar lavage. Fibroblasts were cultured, and hyaluronan and hyaluronan synthase expression was determined at baseline and after exposure to several mediators relevant to asthma pathobiology. The expression of hyaluronan-binding proteins CD44, TLR (Toll-like receptor)-2, and TLR4 on bronchoalveolar lavage macrophages was determined by flow cytometry. IL-8 production by macrophages in response to hyaluronan fragment stimulation was compared. RESULTS: Airway fibroblasts from patients with asthma produced significantly increased concentrations of lower-molecular-weight hyaluronan compared with those of normal fibroblasts. Hyaluronan synthase 2 mRNA was markedly increased in asthmatic fibroblasts. Asthmatic macrophages showed a decrease in cell surface CD44 expression and an increase in TLR2 and TLR4 expression. Macrophages from subjects with asthma showed an increase in responsiveness to low-molecular-weight hyaluronan stimulation, as demonstrated by increased IL-8 production. CONCLUSION: Hyaluronan homeostasis is deranged in asthma, with increased production by fibroblasts and decreased CD44 expression on alveolar macrophages. Upregulation of TLR2 and TLR4 on macrophages with increased sensitivity to hyaluronan fragments suggests a novel proinflammatory mechanism by which persistence of hyaluronan fragments could contribute to chronic inflammation and airway remodeling in asthma.
Asunto(s)
Asma/inmunología , Asma/fisiopatología , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/inmunología , Adulto , Remodelación de las Vías Aéreas (Respiratorias) , Asma/metabolismo , Citocinas/biosíntesis , Regulación hacia Abajo , Femenino , Fibroblastos/metabolismo , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Humanos , Receptores de Hialuranos/genética , Hialuronano Sintasas , Ácido Hialurónico/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Regulación hacia ArribaRESUMEN
Optical coherence tomography (OCT) has seen widespread success as an in vivo clinical diagnostic 3D imaging modality, impacting areas including ophthalmology, cardiology, and gastroenterology. Despite its many advantages, such as high sensitivity, speed, and depth penetration, OCT suffers from several shortcomings that ultimately limit its utility as a 3D microscopy tool, such as its pervasive coherent speckle noise and poor lateral resolution required to maintain millimeter-scale imaging depths. Here, we present 3D optical coherence refraction tomography (OCRT), a computational extension of OCT which synthesizes an incoherent contrast mechanism by combining multiple OCT volumes, acquired across two rotation axes, to form a resolution-enhanced, speckle-reduced, refraction-corrected 3D reconstruction. Our label-free computational 3D microscope features a novel optical design incorporating a parabolic mirror to enable the capture of 5D plenoptic datasets, consisting of millimetric 3D fields of view over up to ±75° without moving the sample. We demonstrate that 3D OCRT reveals 3D features unobserved by conventional OCT in fruit fly, zebrafish, and mouse samples.
RESUMEN
Autophagy is characterized as a cytoprotective process and inhibition of autophagy with medicinally active agents, such as chloroquine (CQ) is proposed as a prospective adjuvant therapy for cancer. Here, we examined the preclinical effects of CQ combined with the MEK inhibitor trametinib (TRA) on melanoma. We found that cotreatment of CQ and TRA markedly slowed melanoma growth induced in Tyr-CreER.BrafCa.Ptenfl/fl mice. Immunostaining showed that trametinib decreased Ki-67+ proliferating cells, and increased TUNEL+ apoptotic cells. The combo treatment induced a further decrease of Ki-67+ proliferating cells. Consistent with the in vivo findings, CQ and TRA inhibited melanoma cell proliferation in vitro, which was correlated by decreased cyclin D1 expression. In addition, we found that tissues treated with CQ and TRA had significantly decreased numbers of CD4+ and CD8+ T-lymphocytes and F4/80+ macrophages. Together, these results indicate that cotreatment of CQ and TRA decreases cancer cell proliferation, but also dampens immune cell infiltration. Further study is warranted to understand whether CQ-induced immune suppression inadvertently affects therapeutic benefits.
RESUMEN
Surfactant protein A (SP-A) mediates innate immune cell responses to LPS, a cell wall component of gram-negative bacteria that is found ubiquitously in the environment and is associated with adverse health effects. Inhaled LPS induces lung inflammation and increases airway responsiveness (AR). However, the role of SP-A in mediating LPS-induced AR is not well-defined. Nitric oxide (NO) is described as a potent bronchodilator, and previous studies showed that SP-A modulates the LPS-induced production of NO. Hence, we tested the hypothesis that increased AR, observed in response to aerosolized LPS exposure, would be significantly reduced in an SP-A-deficient condition. Wild-type (WT) and SP-A null (SP-A(-/-)) mice were challenged with aerosolized LPS. Results indicate that despite similar inflammatory indices, LPS-treated SP-A(-/-) mice had attenuated AR after methacholine challenge, compared with WT mice. The attenuated AR could not be attributed to inherent differences in SP-D concentrations or airway smooth muscle contractile and relaxation properties, because these measures were similar between WT and SP-A(-/-) mice. LPS-treated SP-A(-/-) mice, however, had elevated nitrite concentrations, inducible nitric oxide synthase (iNOS) expression, and NOS activity in their lungs. Moreover, the administration of the iNOS-specific inhibitor 1400W completely abrogated the attenuated AR. Thus, when exposed to aerosolized LPS, SP-A(-/-) mice demonstrate a relative airway hyporesponsiveness that appears to be mediated at least partly via an iNOS-dependent mechanism. These findings may have clinical significance, because recent studies reported associations between surfactant protein polymorphisms and a variety of lung diseases.