RESUMEN
The mitochondrial electron transport chain complexes are organized into supercomplexes (SCs) of defined stoichiometry, which have been proposed to regulate electron flux via substrate channeling. We demonstrate that CoQ trapping in the isolated SC I+III2 limits complex (C)I turnover, arguing against channeling. The SC structure, resolved at up to 3.8 Å in four distinct states, suggests that CoQ oxidation may be rate limiting because of unequal access of CoQ to the active sites of CIII2. CI shows a transition between "closed" and "open" conformations, accompanied by the striking rotation of a key transmembrane helix. Furthermore, the state of CI affects the conformational flexibility within CIII2, demonstrating crosstalk between the enzymes. CoQ was identified at only three of the four binding sites in CIII2, suggesting that interaction with CI disrupts CIII2 symmetry in a functionally relevant manner. Together, these observations indicate a more nuanced functional role for the SCs.
Asunto(s)
Complejo III de Transporte de Electrones/química , Complejo I de Transporte de Electrón/química , Mitocondrias Cardíacas/enzimología , Animales , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína , OvinosRESUMEN
Cleavage and polyadenylation factor (CPF/CPSF) is a multi-protein complex essential for formation of eukaryotic mRNA 3' ends. CPF cleaves pre-mRNAs at a specific site and adds a poly(A) tail. The cleavage reaction defines the 3' end of the mature mRNA, and thus the activity of the endonuclease is highly regulated. Here, we show that reconstitution of specific pre-mRNA cleavage with recombinant yeast proteins requires incorporation of the Ysh1 endonuclease into an eight-subunit "CPFcore" complex. Cleavage also requires the accessory cleavage factors IA and IB, which bind substrate pre-mRNAs and CPF, likely facilitating assembly of an active complex. Using X-ray crystallography, electron microscopy, and mass spectrometry, we determine the structure of Ysh1 bound to Mpe1 and the arrangement of subunits within CPFcore. Together, our data suggest that the active mRNA 3' end processing machinery is a dynamic assembly that is licensed to cleave only when all protein factors come together at the polyadenylation site.
Asunto(s)
Endonucleasas/metabolismo , Poliadenilación , Precursores del ARN/metabolismo , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Citocromos c/genética , Citocromos c/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Activación Enzimática , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Simulación del Acoplamiento Molecular , Complejos Multiproteicos , Polinucleotido Adenililtransferasa/genética , Polinucleotido Adenililtransferasa/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Precursores del ARN/genética , ARN de Hongos/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad , Espectrometría de Masas en Tándem , Factores de Escisión y Poliadenilación de ARNm/genéticaRESUMEN
The TRAPP complexes are nucleotide exchange factors that play essential roles in membrane traffic and autophagy. TRAPPII activates Rab11, and TRAPPIII activates Rab1, with the two complexes sharing a core of small subunits that affect nucleotide exchange but being distinguished by specific large subunits that are essential for activity in vivo. Crystal structures of core subunits have revealed the mechanism of Rab activation, but how the core and the large subunits assemble to form the complexes is unknown. We report a cryo-EM structure of the entire Drosophila TRAPPIII complex. The TRAPPIII-specific subunits TRAPPC8 and TRAPPC11 hold the catalytic core like a pair of tongs, with TRAPPC12 and TRAPPC13 positioned at the joint between them. TRAPPC2 and TRAPPC2L link the core to the two large arms, with the interfaces containing residues affected by disease-causing mutations. The TRAPPC8 arm is positioned such that it would contact Rab1 that is bound to the core, indicating how the arm could determine the specificity of the complex. A lower resolution structure of TRAPPII shows a similar architecture and suggests that the TRAPP complexes evolved from a single ur-TRAPP.
Asunto(s)
Proteínas de Drosophila/química , Proteínas de Transporte Vesicular/química , Proteínas de Unión al GTP rab1/química , Microscopía por Crioelectrón , Proteínas de Drosophila/ultraestructura , Factores de Intercambio de Guanina Nucleótido/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Conformación Proteica , Proteínas de Transporte Vesicular/ultraestructura , Proteínas de Unión al GTP rab1/ultraestructuraRESUMEN
Host infection by pathogenic mycobacteria, such as Mycobacterium tuberculosis, is facilitated by virulence factors that are secreted by type VII secretion systems1. A molecular understanding of the type VII secretion mechanism has been hampered owing to a lack of three-dimensional structures of the fully assembled secretion apparatus. Here we report the cryo-electron microscopy structure of a membrane-embedded core complex of the ESX-3/type VII secretion system from Mycobacterium smegmatis. The core of the ESX-3 secretion machine consists of four protein components-EccB3, EccC3, EccD3 and EccE3, in a 1:1:2:1 stoichiometry-which form two identical protomers. The EccC3 coupling protein comprises a flexible array of four ATPase domains, which are linked to the membrane through a stalk domain. The domain of unknown function (DUF) adjacent to the stalk is identified as an ATPase domain that is essential for secretion. EccB3 is predominantly periplasmatic, but a small segment crosses the membrane and contacts the stalk domain. This suggests that conformational changes in the stalk domain-triggered by substrate binding at the distal end of EccC3 and subsequent ATP hydrolysis in the DUF-could be coupled to substrate secretion to the periplasm. Our results reveal that the architecture of type VII secretion systems differs markedly from that of other known secretion machines2, and provide a structural understanding of these systems that will be useful for the design of antimicrobial strategies that target bacterial virulence.
Asunto(s)
Microscopía por Crioelectrón , Mycobacterium smegmatis/química , Sistemas de Secreción Tipo VII/química , Sistemas de Secreción Tipo VII/ultraestructura , Actinobacteria/química , Actinobacteria/enzimología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/aislamiento & purificación , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/ultraestructura , Dominios Proteicos , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Relación Estructura-Actividad , Thermomonospora , Sistemas de Secreción Tipo VII/aislamiento & purificaciónRESUMEN
The Fanconi anaemia (FA) pathway repairs DNA damage caused by endogenous and chemotherapy-induced DNA crosslinks, and responds to replication stress1,2. Genetic inactivation of this pathway by mutation of genes encoding FA complementation group (FANC) proteins impairs development, prevents blood production and promotes cancer1,3. The key molecular step in the FA pathway is the monoubiquitination of a pseudosymmetric heterodimer of FANCD2-FANCI4,5 by the FA core complex-a megadalton multiprotein E3 ubiquitin ligase6,7. Monoubiquitinated FANCD2 then recruits additional protein factors to remove the DNA crosslink or to stabilize the stalled replication fork. A molecular structure of the FA core complex would explain how it acts to maintain genome stability. Here we reconstituted an active, recombinant FA core complex, and used cryo-electron microscopy and mass spectrometry to determine its structure. The FA core complex comprises two central dimers of the FANCB and FA-associated protein of 100 kDa (FAAP100) subunits, flanked by two copies of the RING finger subunit, FANCL. These two heterotrimers act as a scaffold to assemble the remaining five subunits, resulting in an extended asymmetric structure. Destabilization of the scaffold would disrupt the entire complex, resulting in a non-functional FA pathway. Thus, the structure provides a mechanistic basis for the low numbers of patients with mutations in FANCB, FANCL and FAAP100. Despite a lack of sequence homology, FANCB and FAAP100 adopt similar structures. The two FANCL subunits are in different conformations at opposite ends of the complex, suggesting that each FANCL has a distinct role. This structural and functional asymmetry of dimeric RING finger domains may be a general feature of E3 ligases. The cryo-electron microscopy structure of the FA core complex provides a foundation for a detailed understanding of its E3 ubiquitin ligase activity and DNA interstrand crosslink repair.
Asunto(s)
Microscopía por Crioelectrón , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Subunidades de Proteína/química , Animales , Pollos , Anemia de Fanconi/enzimología , Proteína del Grupo de Complementación L de la Anemia de Fanconi/química , Proteína del Grupo de Complementación L de la Anemia de Fanconi/ultraestructura , Espectrometría de Masas , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína , Relación Estructura-Actividad , UbiquitinaciónRESUMEN
Biogenesis of the U5 small nuclear ribonucleoprotein (snRNP) is an essential and highly regulated process. In particular, PRPF8, one of U5 snRNP main components, requires HSP90 working in concert with R2TP, a cochaperone complex containing RUVBL1 and RUVBL2 AAA-ATPases, and additional factors that are still poorly characterized. Here, we use biochemistry, interaction mapping, mass spectrometry and cryoEM to study the role of ZNHIT2 in the regulation of the R2TP chaperone during the biogenesis of PRPF8. ZNHIT2 forms a complex with R2TP which depends exclusively on the direct interaction of ZNHIT2 with the RUVBL1-RUVBL2 ATPases. The cryoEM analysis of this complex reveals that ZNHIT2 alters the conformation and nucleotide state of RUVBL1-RUVBL2, affecting its ATPase activity. We characterized the interactions between R2TP, PRPF8, ZNHIT2, ECD and AAR2 proteins. Interestingly, PRPF8 makes a direct interaction with R2TP and this complex can incorporate ZNHIT2 and other proteins involved in the biogenesis of PRPF8 such as ECD and AAR2. Together, these results show that ZNHIT2 participates in the assembly of the U5 snRNP as part of a network of contacts between assembly factors required for PRPF8 biogenesis and the R2TP-HSP90 chaperone, while concomitantly regulating the structure and nucleotide state of R2TP.
Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Fosfoproteínas/metabolismo , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Células HEK293 , Humanos , Unión Proteica , Empalme del ARN , Proteínas de Unión al ARNRESUMEN
In the last two decades, biological mass spectrometry has become the gold standard for the identification of proteins in biological samples. The technological advancement of mass spectrometers and the development of methods for ionization, gas phase transfer, peptide fragmentation as well as for acquisition of high-resolution mass spectrometric data marked the success of the technique. This chapter introduces peptide-based mass spectrometry as a tool for the investigation of protein complexes. It provides an overview of the main steps for sample preparation starting from protein fractionation, reduction, alkylation and focus on the final step of protein digestion. The basic concepts of biological mass spectrometry as well as details about instrumental analysis and data acquisition are described. Finally, the most common methods for data analysis and sequence determination are summarized with an emphasis on its application to protein-protein complexes.
Asunto(s)
Péptidos , Proteínas , Péptidos/química , Espectrometría de Masas/métodos , Proteínas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodosRESUMEN
The characterization of a protein complex by mass spectrometry can be conducted at different levels. Initial steps regard the qualitative composition of the complex and subunit identification. After that, quantitative information such as stoichiometric ratios and copy numbers for each subunit in a complex or super-complex is acquired. Peptide-based LC-MS/MS offers a wide number of methods and protocols for the characterization of protein complexes. This chapter concentrates on the applications of peptide-based LC-MS/MS for the qualitative, quantitative, and structural characterization of protein complexes focusing on subunit identification, determination of stoichiometric ratio and number of subunits per complex as well as on cross-linking mass spectrometry and hydrogen/deuterium exchange as methods for the structural investigation of the biological assemblies.
Asunto(s)
Péptidos , Espectrometría de Masas en Tándem , Cromatografía Liquida , Hidrógeno/químicaRESUMEN
Mitochondrial complex I (also known as NADH:ubiquinone oxidoreductase) contributes to cellular energy production by transferring electrons from NADH to ubiquinone coupled to proton translocation across the membrane. It is the largest protein assembly of the respiratory chain with a total mass of 970 kilodaltons. Here we present a nearly complete atomic structure of ovine (Ovis aries) mitochondrial complex I at 3.9 Å resolution, solved by cryo-electron microscopy with cross-linking and mass-spectrometry mapping experiments. All 14 conserved core subunits and 31 mitochondria-specific supernumerary subunits are resolved within the L-shaped molecule. The hydrophilic matrix arm comprises flavin mononucleotide and 8 iron-sulfur clusters involved in electron transfer, and the membrane arm contains 78 transmembrane helices, mostly contributed by antiporter-like subunits involved in proton translocation. Supernumerary subunits form an interlinked, stabilizing shell around the conserved core. Tightly bound lipids (including cardiolipins) further stabilize interactions between the hydrophobic subunits. Subunits with possible regulatory roles contain additional cofactors, NADPH and two phosphopantetheine molecules, which are shown to be involved in inter-subunit interactions. We observe two different conformations of the complex, which may be related to the conformationally driven coupling mechanism and to the active-deactive transition of the enzyme. Our structure provides insight into the mechanism, assembly, maturation and dysfunction of mitochondrial complex I, and allows detailed molecular analysis of disease-causing mutations.
Asunto(s)
Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/ultraestructura , Mitocondrias/química , Animales , Sitios de Unión , Cardiolipinas/química , Cardiolipinas/metabolismo , Reactivos de Enlaces Cruzados/química , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Modelos Moleculares , NADP/metabolismo , Oxidación-Reducción , Panteteína/análogos & derivados , Panteteína/metabolismo , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , OvinosRESUMEN
The number of publications in the field of chemical cross-linking combined with mass spectrometry (XL-MS) to derive constraints for protein three-dimensional structure modeling and to probe protein-protein interactions has increased during the last years. As the technique is now becoming routine for in vitro and in vivo applications in proteomics and structural biology there is a pressing need to define protocols as well as data analysis and reporting formats. Such consensus formats should become accepted in the field and be shown to lead to reproducible results. This first, community-based harmonization study on XL-MS is based on the results of 32 groups participating worldwide. The aim of this paper is to summarize the status quo of XL-MS and to compare and evaluate existing cross-linking strategies. Our study therefore builds the framework for establishing best practice guidelines to conduct cross-linking experiments, perform data analysis, and define reporting formats with the ultimate goal of assisting scientists to generate accurate and reproducible XL-MS results.
Asunto(s)
Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Albúmina Sérica Bovina/análisis , Albúmina Sérica Bovina/química , Laboratorios , Espectrometría de Masas/instrumentación , Reproducibilidad de los ResultadosRESUMEN
Human Timeless is involved in replication fork stabilization, S-phase checkpoint activation and establishment of sister chromatid cohesion. In the cell, Timeless forms a constitutive heterodimeric complex with Tipin. Here we present the 1.85 Å crystal structure of a large N-terminal segment of human Timeless, spanning amino acids 1-463, and we show that this region of human Timeless harbours a partial binding site for Tipin. Furthermore, we identify minimal regions of the two proteins that are required for the formation of a stable Timeless-Tipin complex and provide evidence that the Timeless-Tipin interaction is based on a composite binding interface comprising different domains of Timeless.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fenómenos Biofísicos , Reactivos de Enlaces Cruzados/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN , Humanos , Espectrometría de Masas , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Homología Estructural de ProteínaRESUMEN
NADH-ubiquinone oxidoreductase (complex I) is the largest (â¼1 MDa) and the least characterized complex of the mitochondrial electron transport chain. Because of the ease of sample availability, previous work has focused almost exclusively on bovine complex I. However, only medium resolution structural analyses of this complex have been reported. Working with other mammalian complex I homologues is a potential approach for overcoming these limitations. Due to the inherent difficulty of expressing large membrane protein complexes, screening of complex I homologues is limited to large mammals reared for human consumption. The high sequence identity among these available sources may preclude the benefits of screening. Here, we report the characterization of complex I purified from Ovis aries (ovine) heart mitochondria. All 44 unique subunits of the intact complex were identified by mass spectrometry. We identified differences in the subunit composition of subcomplexes of ovine complex I as compared with bovine, suggesting differential stability of inter-subunit interactions within the complex. Furthermore, the 42-kDa subunit, which is easily lost from the bovine enzyme, remains tightly bound to ovine complex I. Additionally, we developed a novel purification protocol for highly active and stable mitochondrial complex I using the branched-chain detergent lauryl maltose neopentyl glycol. Our data demonstrate that, although closely related, significant differences exist between the biochemical properties of complex I prepared from ovine and bovine mitochondria and that ovine complex I represents a suitable alternative target for further structural studies.
Asunto(s)
Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/aislamiento & purificación , Mitocondrias Cardíacas/enzimología , Animales , Bovinos , Humanos , OvinosRESUMEN
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) shows that inflammation starts early and progresses with age. B cells play a central role in this process, contributing to cytokine production, defective regulatory functions, and abnormal immunoglobulin production, even in the central nervous system. Anti-CD20 (aCD20) therapies, which deplete CD20+ B cells, are largely used in the treatment of both relapsing remitting (RR) and progressive (PR) forms of MS. Although effective against MS symptoms and lesions detectable by magnetic resonance imaging, aCD20 therapies can reduce the immune response to COVID-19 vaccination. By using high-parameter flow cytometry, we examined the antigen-specific (Ag+) immune response six months post-third COVID-19 mRNA vaccination in MS patients with RR and PR forms on aCD20 therapy. Despite lower Ag+ B cell responses and lower levels of anti-SARS-CoV2, both total and neutralizing antibodies, RR and PR patients developed strong Ag+ T cell responses. We observed similar percentages and numbers of Ag+ CD4+ T cells and a high proportion of Ag+ CD8+ T cells, with slight differences in T cell phenotype and functionality; this, however, suggested the presence of differences in immune responses driven by age and disease severity.
RESUMEN
Chemical modulation of proteins enables a mechanistic understanding of biology and represents the foundation of most therapeutics. However, despite decades of research, 80% of the human proteome lacks functional ligands. Chemical proteomics has advanced fragment-based ligand discovery toward cellular systems, but throughput limitations have stymied the scalable identification of fragment-protein interactions. We report proteome-wide maps of protein-binding propensity for 407 structurally diverse small-molecule fragments. We verified that identified interactions can be advanced to active chemical probes of E3 ubiquitin ligases, transporters, and kinases. Integrating machine learning binary classifiers further enabled interpretable predictions of fragment behavior in cells. The resulting resource of fragment-protein interactions and predictive models will help to elucidate principles of molecular recognition and expedite ligand discovery efforts for hitherto undrugged proteins.
Asunto(s)
Descubrimiento de Drogas , Aprendizaje Automático , Proteómica , Bibliotecas de Moléculas Pequeñas , Humanos , Ligandos , Unión Proteica , Proteoma/metabolismo , Proteómica/métodos , Bibliotecas de Moléculas Pequeñas/química , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
The R2TP (RUVBL1-RUVBL2-RPAP3-PIH1D1) complex, in collaboration with heat shock protein 90 (HSP90), functions as a chaperone for the assembly and stability of protein complexes, including RNA polymerases, small nuclear ribonucleoprotein particles (snRNPs), and phosphatidylinositol 3-kinase (PI3K)-like kinases (PIKKs) such as TOR and SMG1. PIKK stabilization depends on an additional complex of TELO2, TTI1, and TTI2 (TTT), whose structure and function are poorly understood. The cryoelectron microscopy (cryo-EM) structure of the human R2TP-TTT complex, together with biochemical experiments, reveals the mechanism of TOR recruitment to the R2TP-TTT chaperone. The HEAT-repeat TTT complex binds the kinase domain of TOR, without blocking its activity, and delivers TOR to the R2TP chaperone. In addition, TTT regulates the R2TP chaperone by inhibiting RUVBL1-RUVBL2 ATPase activity and by modulating the conformation and interactions of the PIH1D1 and RPAP3 components of R2TP. Taken together, our results show how TTT couples the recruitment of TOR to R2TP with the regulation of this chaperone system.
Asunto(s)
Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Relación Estructura-ActividadRESUMEN
Bromodomain-containing protein 4 (BRD4) is an epigenetic reader and oncology drug target that regulates gene transcription through binding to acetylated chromatin via bromodomains. Phosphorylation by casein kinase II (CK2) regulates BRD4 function, is necessary for active transcription and is involved in resistance to BRD4 drug inhibition in triple-negative breast cancer. Here, we provide the first biophysical analysis of BRD4 phospho-regulation. Using integrative structural biology, we show that phosphorylation by CK2 modulates the dimerization of human BRD4. We identify two conserved regions, a coiled-coil motif and the Basic-residue enriched Interaction Domain (BID), essential for the BRD4 structural rearrangement, which we term the phosphorylation-dependent dimerization domain (PDD). Finally, we demonstrate that bivalent inhibitors induce a conformational change within BRD4 dimers in vitro and in cancer cells. Our results enable the proposal of a model for BRD4 activation critical for the characterization of its protein-protein interaction network and for the development of more specific therapeutics.
Asunto(s)
Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica , Factores de Transcripción/genética , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Fosforilación , Factores de Transcripción/metabolismoRESUMEN
In the drug discovery process, accurate methods of computing the affinity of small molecules with a biological target are strongly needed. This is particularly true for molecular docking and virtual screening methods, which use approximated scoring functions and struggle in estimating binding energies in correlation with experimental values. Among the various methods, MM-PBSA and MM-GBSA are emerging as useful and effective approaches. Although these methods are typically applied to large collections of equilibrated structures of protein-ligand complexes sampled during molecular dynamics in water, the possibility to reliably estimate ligand affinity using a single energy-minimized structure and implicit solvation models has not been explored in sufficient detail. Herein, we thoroughly investigate this hypothesis by comparing different methods for the generation of protein-ligand complexes and diverse methods for free energy prediction for their ability to correlate with experimental values. The methods were tested on a series of structurally diverse inhibitors of Plasmodium falciparum DHFR with known binding mode and measured affinities. The results showed that correlations between MM-PBSA or MM-GBSA binding free energies with experimental affinities were in most cases excellent. Importantly, we found that correlations obtained with the use of a single protein-ligand minimized structure and with implicit solvation models were similar to those obtained after averaging over multiple MD snapshots with explicit water molecules, with consequent save of computing time without loss of accuracy. When applied to a virtual screening experiment, such an approach proved to discriminate between true binders and decoy molecules and yielded significantly better enrichment curves.
Asunto(s)
Inhibidores Enzimáticos/química , Modelos Químicos , Simulación de Dinámica Molecular , Teoría Cuántica , Tetrahidrofolato Deshidrogenasa/química , Sitios de Unión , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Ligandos , Modelos Moleculares , Estructura Molecular , Plasmodium falciparum/enzimología , Tetrahidrofolato Deshidrogenasa/metabolismo , Agua/químicaRESUMEN
The 90 kDa heat shock protein (Hsp90) is a prominent target for anticancer drug discovery. While its N-terminal domain has been widely exploited, several lines of evidence are emerging in favor of targeting its C-terminal domain to conceive innovative drugs based on perturbation of the dimer interface. Here, we describe the application of several computational approaches useful to predict the location of the C-terminal binding site.
Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Sitios de Unión , Cristalografía por Rayos X , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Modelos Moleculares , Conformación ProteicaRESUMEN
Design of irreversible inhibitors is an emerging and relatively less explored strategy for the design of protein kinase inhibitors. In this paper, we present a computational workflow that was specifically conceived to assist such design. The workflow takes the form of a multi-step procedure that includes: the creation of a database of already known reversible inhibitors of protein kinases, the selection of the most promising scaffolds that bind one or more desired kinase templates, the modification of the scaffolds by introduction of chemically reactive groups (suitable cysteine traps) and the final evaluation of the reversible and irreversible protein-ligand complexes with molecular dynamics simulations and binding free energy predictions. Most of these steps were automated. In order to prove that this is viable, the workflow was tested on a database of known inhibitors of ERK2, a protein kinase possessing a cysteine in the ATP site. The modeled ERK2-ligand complexes and the values of the estimated binding free energies of the putative ligands provide useful indicators of their aptitude to bind reversibly and irreversibly to the protein kinase. Moreover, the computational data are used to rank the ligands according to their computed binding free energies and their ability to bind specific protein residues in the reversible and irreversible complexes, thereby providing a useful decision-making tool for each step of the design. In this work we present the overall procedure and the first proof of concept results.