Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(23): 11119-11124, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31097583

RESUMEN

The natural habitats of planktonic and swimming microorganisms, from algae in the oceans to bacteria living in soil or intestines, are characterized by highly heterogeneous fluid flows. The complex interplay of flow-field topology, self-propulsion, and porous microstructure is essential to a wide range of biophysical and ecological processes, including marine oxygen production, remineralization of organic matter, and biofilm formation. Although much progress has been made in the understanding of microbial hydrodynamics and surface interactions over the last decade, the dispersion of active suspensions in complex flow environments still poses unsolved fundamental questions that preclude predictive models for microbial transport and spreading under realistic conditions. Here, we combine experiments and simulations to identify the key physical mechanisms and scaling laws governing the dispersal of swimming bacteria in idealized porous media flows. By tracing the scattering dynamics of swimming bacteria in microfluidic crystal lattices, we show that hydrodynamic gradients hinder transverse bacterial dispersion, thereby enhancing stream-wise dispersion [Formula: see text]-fold beyond canonical Taylor-Aris dispersion of passive Brownian particles. Our analysis further reveals that hydrodynamic cell reorientation and Lagrangian flow structure induce filamentous density patterns that depend upon the incident angle of the flow and disorder of the medium, in striking analogy to classical light-scattering experiments.


Asunto(s)
Bacterias/crecimiento & desarrollo , Movimiento/fisiología , Fenómenos Fisiológicos Bacterianos , Biopelículas/crecimiento & desarrollo , Ecosistema , Hidrodinámica , Microfluídica/métodos , Modelos Biológicos , Fenómenos Físicos , Porosidad
2.
Antib Ther ; 6(3): 211-223, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37680350

RESUMEN

In vivo VHH discovery approaches have been limited by the lack of methodologies for camelid B cell interrogation. Here, we report a novel application of the Beacon® optofluidic platform to the discovery of heavy-chain-only antibodies by screening alpaca B cells. Methods for alpaca B cell enrichment, culture, IgG2/3 detection, and sequencing were developed and used to discover target-specific VHH from an alpaca immunized with prostate-specific membrane antigen (PSMA) or a second target. PSMA-specific hits were expressed as VHH-Fc and characterized using label-free techniques. Anti-PSMA IgG2/3 titer plateaued on day 153, when on-Beacon IgG2/3 secretion and target binding rates peaked. Of 13 recombinantly expressed VHH-Fc, all but one bound with nanomolar affinity, and five were successfully humanized. Repertoire sequencing uncovered additional variants within the clonal lineages of the validated hits. The establishment of this workflow extends the powerful Beacon technology to enable rapid VHH discovery directly from natural camelid immune repertoires.

3.
Nat Commun ; 12(1): 5949, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642318

RESUMEN

Directed motility enables swimming microbes to navigate their environment for resources via chemo-, photo-, and magneto-taxis. However, directed motility competes with fluid flow in porous microbial habitats, affecting biofilm formation and disease transmission. Despite this broad importance, a microscopic understanding of how directed motility impacts the transport of microswimmers in flows through constricted pores remains unknown. Through microfluidic experiments, we show that individual magnetotactic bacteria directed upstream through pores display three distinct regimes, whereby cells swim upstream, become trapped within a pore, or are advected downstream. These transport regimes are reminiscent of the electrical conductivity of a diode and are accurately predicted by a comprehensive Langevin model. The diode-like behavior persists at the pore scale in geometries of higher dimension, where disorder impacts conductivity at the sample scale by extending the trapping regime over a broader range of flow speeds. This work has implications for our understanding of the survival strategies of magnetotactic bacteria in sediments and for developing their use in drug delivery applications in vascular networks.


Asunto(s)
Alphaproteobacteria/fisiología , Campos Magnéticos , Movimiento/fisiología , Taxia/fisiología , Biopelículas/crecimiento & desarrollo , Conductividad Eléctrica , Técnicas Analíticas Microfluídicas , Porosidad , Reología
4.
Lab Chip ; 19(20): 3481-3489, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31524206

RESUMEN

Fungal adhesion is fundamental to processes ranging from infections to food production to bioengineering. Yet, robust, population-scale quantification methods for yeast surface adhesion are lacking. We developed a microfluidic assay to discriminate and separate genetically-related yeast strains based on adhesion strength, and to quantify effects of ionic strength and substrate hydrophobicity on adhesion. This approach will enable the rapid screening and fractionation of yeast based on adhesive properties for genetic protein engineering, anti-fouling surfaces, and a host of other applications.


Asunto(s)
Microfluídica/métodos , Saccharomyces cerevisiae/aislamiento & purificación , Incrustaciones Biológicas/prevención & control , Interacciones Hidrofóbicas e Hidrofílicas , Mutagénesis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Electricidad Estática , Propiedades de Superficie , Transactivadores/genética , Transactivadores/metabolismo
5.
Sci Rep ; 5: 10675, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26073680

RESUMEN

Strongly interacting one-dimensional quantum systems often behave in a manner that is distinctly different from their higher-dimensional counterparts. When a particle attempts to move in a one-dimensional environment it will unavoidably have to interact and 'push' other particles in order to execute a pattern of motion, irrespective of whether the particles are fermions or bosons. A present frontier in both theory and experiment are mixed systems of different species and/or particles with multiple internal degrees of freedom. Here we consider trapped two-component bosons with short-range inter-species interactions much larger than their intra-species interactions and show that they have novel energetic and magnetic properties. In the strongly interacting regime, these systems have energies that are fractions of the basic harmonic oscillator trap quantum and have spatially separated ground states with manifestly ferromagnetic wave functions. Furthermore, we predict excited states that have perfect antiferromagnetic ordering. This holds for both balanced and imbalanced systems, and we show that it is a generic feature as one crosses from few- to many-body systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA