Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Appl ; 32(1): e02489, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741358

RESUMEN

Marine oil spills continue to be a global issue, heightened by spill events such as the 2010 Deepwater Horizon spill in the Gulf of Mexico, the largest marine oil spill in US waters and among the largest worldwide, affecting over 1,000 km of sensitive wetland shorelines, primarily salt marshes supporting numerous ecosystem functions. To synthesize the effects of the oil spill on foundational vegetation species in the salt marsh ecosystem, Spartina alterniflora and Juncus roemerianus, we performed a meta-analysis using data from 10 studies and 255 sampling sites over seven years post-spill. We examined the hypotheses that the oil spill reduced plant cover, stem density, vegetation height, aboveground biomass, and belowground biomass, and tracked the degree of effects temporally to estimate recovery time frames. All plant metrics indicated impacts from oiling, with 20-100% maximum reductions depending on oiling level and marsh zone. Peak reductions of ~70-90% in total plant cover, total aboveground biomass, and belowground biomass were observed for heavily oiled sites at the marsh edge. Both Spartina and Juncus were impacted, with Juncus affected to a greater degree. Most plant metrics had recovery time frames of three years or longer, including multiple metrics with incomplete recovery over the duration of our data, at least seven years post-spill. Belowground biomass was particularly concerning, because it declined over time in contrast with recovery trends in most aboveground metrics, serving as a strong indicator of ongoing impact, limited recovery, and impaired resilience. We conclude that the Deepwater Horizon spill had multiyear impacts on salt marsh vegetation, with full recovery likely to exceed 10 years, particularly in heavily oiled marshes, where erosion may preclude full recovery. Vegetation impacts and delayed recovery is likely to have exerted substantial influences on ecosystem processes and associated species, especially along heavily oiled shorelines. Our synthesis affords a greater understanding of ecosystem impacts and recovery following the Deepwater Horizon oil spill, and informs environmental impact analysis, contingency planning, emergency response, damage assessment, and restoration efforts related to oil spills.


Asunto(s)
Contaminación por Petróleo , Contaminantes Químicos del Agua , Biomasa , Ecosistema , Golfo de México , Contaminación por Petróleo/efectos adversos , Plantas , Contaminantes Químicos del Agua/análisis , Humedales
2.
Mar Pollut Bull ; 160: 111581, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32890962

RESUMEN

Prior studies indicated salt marsh periwinkles (Littoraria irrorata) were strongly impacted in heavily oiled marshes for at least 5 years following the Deepwater Horizon oil spill. Here, we detail longer-term effects and recovery over nine years. Our analysis found that neither density nor population size structure recovered at heavily oiled sites where snails were smaller and variability in size structure and density was increased. Total aboveground live plant biomass and stem density remained lower over time in heavily oiled marshes, and we speculate that the resulting more open canopy stimulated benthic microalgal production contributing to high spring periwinkle densities or that the lower stem density reduced the ability of subadults and small adults to escape predation. Our data indicate that periwinkle population recovery may take one to two decades after the oil spill at moderately oiled and heavily oiled sites, respectively.


Asunto(s)
Contaminación por Petróleo , Vinca , Animales , Biomasa , Golfo de México , Contaminación por Petróleo/análisis , Plantas , Humedales
3.
Sci Total Environ ; 672: 456-467, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30965260

RESUMEN

Disturbance interactions occur when one perturbation influences the severity and perhaps the baseline state of succeeding disturbances. Natural and anthropogenic disturbances are frequent in dynamic coastal ecosystems and can often be linked. We evaluated potential for disturbance interactions associated with the 2010 Deepwater Horizon (DWH) oil spill, which was preceded by disturbance from Hurricane Katrina in 2005, by quantifying marsh shoreline retreat across both events. Our goal was to determine the degree to which Hurricane Katrina altered baseline rates of erosion prior to the DWH spill. We quantified erosion rate and fetch from aerial images of northern Barataria Bay, Louisiana marsh shorelines classified as reference, moderately-oiled, and heavily-oiled over three pre-spill time periods (1998-2004, prior to Hurricane Katrina; 2004-2005, during Katrina; 2005-2010, post-Katrina but pre-oil spill) and a post-spill period from 2010 to 2013. Prior to Hurricane Katrina, marsh shoreline erosion rates were low (from 0.38 to 1.10 m yr-1). In contrast during Hurricane Katrina (2004-2005), erosion increased by 661% and 756%, respectively, for shorelines that would subsequently become moderately and heavily-oiled; reference shoreline erosion increased by 59%. These high erosion rates were associated with increased fetch and higher wave action due to loss of protective geomorphic features such as small islands and spits and persisted during the post-Katrina/pre-spill period of 2005-2010 (0.62, 1.38, and 2.07 m yr-1 for reference, moderately, and heavily-oiled shorelines, respectively). Erosion rates increased modestly after the DWH event (reference = 1.13 m yr-1, moderate oiling = 1.45 m yr-1; heavy oiling = 2.77 m yr-1), but not significantly, compared to the post-Katrina period. Consequently, we could not detect a post-spill increase in marsh shoreline erosion. Rather, we concluded that Hurricane Katrina reset the erosion baseline, thereby connecting the two disturbances, and was the major driver of marsh shoreline erosion at our research sites during the study period.

4.
PeerJ ; 5: e3680, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28828273

RESUMEN

Salt marshes in northern Barataria Bay, Louisiana, USA were oiled, sometimes heavily, in the aftermath of the Deepwater Horizon oil spill. Previous studies indicate that fiddler crabs (in the genus Uca) and the salt marsh periwinkle (Littoraria irrorata) were negatively impacted in the short term by the spill. Here, we detail longer-term effects and recovery from moderate and heavy oiling over a 3-year span, beginning 30 months after the spill. Although neither fiddler crab burrow density nor diameter differed between oiled and reference sites when combined across all sampling events, these traits differed among some individual sampling periods consistent with a pattern of lingering oiling impacts. Periwinkle density, however, increased in all oiling categories and shell-length groups during our sampling period, and periwinkle densities were consistently highest at moderately oiled sites where Spartina alterniflora aboveground biomass was highest. Periwinkle shell length linearly increased from a mean of 16.5 to 19.2 mm over the study period at reference sites. In contrast, shell lengths at moderately oiled and heavily oiled sites increased through month 48 after the spill, but then decreased. This decrease was associated with a decline in the relative abundance of large adults (shell length 21-26 mm) at oiled sites which was likely caused by chronic hydrocarbon toxicity or oil-induced effects on habitat quality or food resources. Overall, the recovery of S. alterniflora facilitated the recovery of fiddler crabs and periwinkles. However, our long-term record not only indicates that variation in periwinkle mean shell length and length-frequency distributions are sensitive indicators of the health and recovery of the marsh, but agrees with synoptic studies of vegetation and infaunal communities that full recovery of heavily oiled sites will take longer than 66 months.

5.
Sci Total Environ ; 557-558: 369-77, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27016685

RESUMEN

We investigated the initial impacts and post spill recovery of salt marshes over a 3.5-year period along northern Barataria Bay, LA, USA exposed to varying degrees of Deepwater Horizon oiling to determine the effects on shoreline-stabilizing vegetation and soil processes. In moderately oiled marshes, surface soil total petroleum hydrocarbon concentrations were ~70mgg(-1) nine months after the spill. Though initial impacts of moderate oiling were evident, Spartina alterniflora and Juncus roemerianus aboveground biomass and total live belowground biomass were equivalent to reference marshes within 24-30months post spill. In contrast, heavily oiled marsh plants did not fully recover from oiling with surface soil total petroleum hydrocarbon concentrations that exceeded 500mgg(-1) nine months after oiling. Initially, heavy oiling resulted in near complete plant mortality, and subsequent recovery of live aboveground biomass was only 50% of reference marshes 42months after the spill. Heavy oiling also changed the vegetation structure of shoreline marshes from a mixed Spartina-Juncus community to predominantly Spartina; live Spartina aboveground biomass recovered within 2-3years, however, Juncus showed no recovery. In addition, live belowground biomass (0-12cm) in heavily oiled marshes was reduced by 76% three and a half years after the spill. Detrimental effects of heavy oiling on marsh plants also corresponded with significantly lower soil shear strength, lower sedimentation rates, and higher vertical soil-surface erosion rates, thus potentially affecting shoreline salt marsh stability.


Asunto(s)
Monitoreo del Ambiente , Fenómenos Geológicos , Contaminación por Petróleo , Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Humedales , Ecosistema , Restauración y Remediación Ambiental , Golfo de México , Poaceae , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA