Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Molecules ; 27(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35566171

RESUMEN

Two analogues of tolcapone where the nitrocatechol group has been replaced by a 1-hydroxy-2(1H)-pyridinone have been designed and synthesised. These compounds are expected to have a dual mode of action both beneficial against Parkinson's disease: they are designed to be inhibitors of catechol O-methyl transferase, which contribute to the reduction of dopamine in the brain, and to protect neurons against oxidative damage. To assess whether these compounds are worthy of biological assessment to demonstrate these effects, measurement of their pKa and stability constants for Fe(III), in silico modelling of their potential to inhibit COMT and blood-brain barrier scoring were performed. These results demonstrate that the compounds may indeed have the desired properties, indicating they are indeed promising candidates for further evaluation.


Asunto(s)
Inhibidores de Catecol O-Metiltransferasa , Enfermedad de Parkinson , Benzofenonas , Catecol O-Metiltransferasa , Inhibidores de Catecol O-Metiltransferasa/farmacología , Catecoles/farmacología , Quelantes , Inhibidores Enzimáticos/farmacología , Compuestos Férricos , Humanos , Nitrofenoles , Enfermedad de Parkinson/tratamiento farmacológico , Piridonas
2.
Proteins ; 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33713045

RESUMEN

In vertebrates, the mineralocorticoid receptor (MR) is a steroid-activated nuclear receptor (NR) that plays essential roles in water-electrolyte balance and blood pressure homeostasis. It belongs to the group of oxo-steroidian NRs, together with the glucocorticoid (GR), progesterone (PR), and androgen (AR) receptors. Classically, these oxo-steroidian NRs homodimerize and bind to specific genomic sequences to activate gene expression. NRs are multi-domain proteins, and dimerization is mediated by both the DNA (DBD) and ligand binding domains (LBDs), with the latter thought to provide the largest dimerization interface. However, at the structural level, the dimerization of oxo-steroidian receptors LBDs has remained largely a matter of debate and, despite their sequence homology, there is currently no consensus on a common homodimer assembly across the four receptors, that is, GR, PR, AR, and MR. Here, we examined all available MR LBD crystals using different computational methods (protein common interface database, proteins, interfaces, structures and assemblies, protein-protein interaction prediction by structural matching, and evolutionary protein-protein interface classifier, and the molecular mechanics Poisson-Boltzmann surface area method). A consensus is reached by all methods and singles out an interface mediated by helices H9, H10 and the C-terminal F domain as having characteristics of a biologically relevant assembly. Interestingly, a similar assembly was previously identified for GRα, MR closest homolog. Alternative architectures that were proposed for GRα were not observed for MR. These data call for further experimental investigations of oxo-steroid dimer architectures.

3.
Bioconjug Chem ; 30(6): 1734-1744, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31091078

RESUMEN

Monitoring the assembly of macromolecules to design entities with novel properties can be achieved either chemically creating covalent bonds or by noncovalent connections using appropriate structural motifs. In this report, two self-associating peptides (named K3 and E3) that originate from p53 tetramerization domain were developed as tools for highly specific and noncovalent heterotetramerization of two biomolecules. The pairing/coupling preferences of K3 and E3 were first evaluated by molecular modeling data and confirmed using circular dichroism spectroscopy, size-exclusion chromatography, and biological assays. Regardless of the moieties fused to K3 and E3, these two peptides self-assembled into dimers of dimers to form bivalent heterotetrameric complexes that proved to be extremely stable inside living cells. The benefits of the multivalency in terms of avidity, specificity, and expanded functional activity were strikingly revealed when the proliferating cell nuclear antigen (PCNA), which is essential for DNA replication, was targeted using a heterotetramer presenting both an antibody fragment against PCNA and a specific PCNA binder peptide. In vitro heterotetramerization of these two known PCNA ligands increased their binding efficiencies to PCNA up to 80-fold compared to the best homotetramer counterpart. In cellulo, the heterotetramers were able to efficiently inhibit DNA replication and to trigger cell death. Altogether, we demonstrate that these two biselective self-assembling peptidic domains offer a versatile noncovalent conjugation method that can be easily implemented for protein engineering.


Asunto(s)
Péptidos/química , Antígeno Nuclear de Célula en Proliferación/química , Proteína p53 Supresora de Tumor/química , Línea Celular Tumoral , ADN/química , Replicación del ADN , Humanos , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína
4.
J Comput Chem ; 39(30): 2551-2557, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30447084

RESUMEN

Molecular dynamics (MD) simulations are widely used to explore the conformational space of biological macromolecules. Advances in hardware, as well as in methods, make the generation of large and complex MD datasets much more common. Although different clustering and dimensionality reduction methods have been applied to MD simulations, there remains a need for improved strategies that handle nonlinear data and/or can be applied to very large datasets. We present an original implementation of the pivot-based version of the stochastic proximity embedding method aimed at large MD datasets using the dihedral distance as a metric. The advantages of the algorithm in terms of data storage and computational efficiency are presented, as well as the implementation realized. Application and testing through the analysis of a 200 ns accelerated MD simulation of a 35-residue villin headpiece is discussed. Analysis of the simulation shows the promise of this method to organize large conformational ensembles. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Simulación de Dinámica Molecular , Conformación Proteica , Proteínas/química , Procesos Estocásticos , Bases de Datos de Proteínas
5.
Biochim Biophys Acta Gen Subj ; 1862(8): 1810-1825, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29723544

RESUMEN

BACKGROUND: Nuclear hormone receptors (NRs) constitute a large family of multi-domain ligand-activated transcription factors. Dimerization is essential for their regulation, and both DNA binding domain (DBD) and ligand binding domain (LBD) are implicated in dimerization. Intriguingly, the glucocorticoid receptor-α (GRα) presents a DBD dimeric architecture similar to that of the homologous estrogen receptor-α (ERα), but an atypical dimeric architecture for the LBD. The physiological relevance of the proposed GRα LBD dimer is a subject of debate. METHODS: We analyzed all GRα LBD homodimers observed in crystals using an energetic analysis based on the PISA and on the MM/PBSA methods and a sequence conservation analysis, using the ERα LBD dimer as a reference point. RESULTS: Several dimeric assemblies were observed for GRα LBD. The assembly generally taken to be physiologically relevant showed weak binding free energy and no significant residue conservation at the contact interface, while an alternative homodimer mediated by both helix 9 and C-terminal residues showed significant binding free energy and residue conservation. However, none of the GRα LBD assemblies found in crystals are as stable or conserved as the canonical ERα LBD dimer. GRα C-terminal sequence (F-domain) forms a steric obstacle to the canonical dimer assembly in all available structures. CONCLUSIONS: Our analysis calls for a re-examination of the currently accepted GRα homodimer structure and experimental investigations of the alternative architectures. GENERAL SIGNIFICANCE: This work questions the validity of the currently accepted architecture. This has implications for interpreting physiological data and for therapeutic design pertaining to glucocorticoid research.


Asunto(s)
Conformación Proteica , Multimerización de Proteína , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Animales , Sitios de Unión , Humanos , Ligandos , Ratones , Modelos Moleculares , Unión Proteica , Dominios Proteicos
6.
Nucleic Acids Res ; 44(W1): W401-5, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27174930

RESUMEN

With the increasing number of protein structures available, there is a need for tools capable of automating the comparison of ensembles of structures, a common requirement in structural biology and bioinformatics. PSSweb is a web server for protein structural statistics. It takes as input an ensemble of PDB files of protein structures, performs a multiple sequence alignment and computes structural statistics for each position of the alignment. Different optional functionalities are proposed: structure superposition, Cartesian coordinate statistics, dihedral angle calculation and statistics, and a cluster analysis based on dihedral angles. An interactive report is generated, containing a summary of the results, tables, figures and 3D visualization of superposed structures. The server is available at http://pssweb.org.


Asunto(s)
Internet , Proteínas/química , Programas Informáticos , Algoritmos , Análisis por Conglomerados , Biología Computacional , Computadores , Bases de Datos de Proteínas , Humanos , Alineación de Secuencia
7.
Nucleic Acids Res ; 44(7): 3408-19, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26896800

RESUMEN

Molecular dynamics (MD) simulations and time resolved fluorescence (TRF) spectroscopy were combined to quantitatively describe the conformational landscape of the DNA primary binding sequence (PBS) of the HIV-1 genome, a short hairpin targeted by retroviral nucleocapsid proteins implicated in the viral reverse transcription. Three 2-aminopurine (2AP) labeled PBS constructs were studied. For each variant, the complete distribution of fluorescence lifetimes covering 5 orders of magnitude in timescale was measured and the populations of conformers experimentally observed to undergo static quenching were quantified. A binary quantification permitted the comparison of populations from experimental lifetime amplitudes to populations of aromatically stacked 2AP conformers obtained from simulation. Both populations agreed well, supporting the general assumption that quenching of 2AP fluorescence results from pi-stacking interactions with neighboring nucleobases and demonstrating the success of the proposed methodology for the combined analysis of TRF and MD data. Cluster analysis of the latter further identified predominant conformations that were consistent with the fluorescence decay times and amplitudes, providing a structure-based rationalization for the wide range of fluorescence lifetimes. Finally, the simulations provided evidence of local structural perturbations induced by 2AP. The approach presented is a general tool to investigate fine structural heterogeneity in nucleic acid and nucleoprotein assemblies.


Asunto(s)
ADN/química , 2-Aminopurina , ADN Viral/química , VIH-1/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Espectrometría de Fluorescencia
8.
Biochim Biophys Acta ; 1850(5): 1026-1040, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25240462

RESUMEN

BACKGROUND: Post-translational modifications of histones, and in particular of their disordered N-terminal tails, play a major role in epigenetic regulation. The identification of proteins and proteic domains that specifically bind modified histones is therefore of paramount importance to understand the molecular mechanisms of epigenetics. METHODS: We performed an energetic analysis using the MM/PBSA method in order to study known complexes between methylated histone H3 and effector domains of the PHD family. We then developed a simple molecular dynamics based predictive model based on our analysis. RESULTS: We present a thorough validation of our procedure, followed by the computational predictions of new PHD domains specific for binding histone H3 methylated on lysine 4 (K4). CONCLUSIONS: PHD domains recognize methylated K4 on histone H3 in the context of a linear interaction motif (LIM) formed by the first four amino acids of histone H3 as opposed to recognition of a single methylated site. PHD domains with different sequences find chemically equivalent solutions for stabilizing the histone LIM and these can be identified from energetic analysis. This analysis, in turn, allows for the identification of new PHD domains that bind methylated H3K4 using information that cannot be retrieved from sequence comparison alone. GENERAL SIGNIFICANCE: Molecular dynamics simulations can be used to devise computational proteomics protocols that are both easy to implement and interpret, and that yield reliable predictions that compare favorably to and complement experimental proteomics methods. This article is part of a Special Issue entitled Recent developments of molecular dynamics.


Asunto(s)
Histonas/química , Simulación de Dinámica Molecular , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Factores de Transcripción/química , Animales , Sitios de Unión , Transferencia de Energía , Histonas/metabolismo , Humanos , Lisina , Metilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo
9.
BMC Evol Biol ; 15: 222, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26459560

RESUMEN

BACKGROUND: Transposable elements (TE) have attracted much attention since they shape the genome and contribute to species evolution. Organisms have evolved mechanisms to control TE activity. Testis expressed 19 (Tex19) represses TE expression in mouse testis and placenta. In the human and mouse genomes, Tex19 and Secreted and transmembrane 1 (Sectm1) are neighbors but are not homologs. Sectm1 is involved in immunity and its molecular phylogeny is unknown. METHODS: Using multiple alignments of complete protein sequences (MACS), we inferred Tex19 and Sectm1 molecular phylogenies. Protein conserved regions were identified and folds were predicted. Finally, expression patterns were studied across tissues and species using RNA-seq public data and RT-PCR. RESULTS: We present 2 high quality alignments of 58 Tex19 and 58 Sectm1 protein sequences from 48 organisms. First, both genes are eutherian-specific, i.e., exclusively present in mammals except monotremes (platypus) and marsupials. Second, Tex19 and Sectm1 have both duplicated in Sciurognathi and Bovidae while they have remained as single copy genes in all further placental mammals. Phylogenetic concordance between both genes was significant (p-value < 0.05) and supported co-evolution and functional relationship. At the protein level, Tex19 exhibits 3 conserved regions and 4 invariant cysteines. In particular, a CXXC motif is present in the N-terminal conserved region. Sectm1 exhibits 2 invariant cysteines and an Ig-like domain. Strikingly, Tex19 C-terminal conserved region was lost in Haplorrhini primates while a Sectm1 C-terminal extra domain was acquired. Finally, we have determined that Tex19 and Sectm1 expression levels anti-correlate across the testis of several primates (ρ = -0.72) which supports anti-regulation. CONCLUSIONS: Tex19 and Sectm1 co-evolution and anti-regulated expressions support a strong functional relationship between both genes. Since Tex19 operates a control on TE and Sectm1 plays a role in immunity, Tex19 might suppress an immune response directed against cells that show TE activity in eutherian reproductive tissues.


Asunto(s)
Evolución Molecular , Mamíferos/genética , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Secuencia de Aminoácidos , Animales , Femenino , Expresión Génica , Humanos , Masculino , Mamíferos/clasificación , Mamíferos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Filogenia , Placenta/metabolismo , Embarazo , Proteínas de Unión al ARN , Ratas , Retroelementos , Testículo/metabolismo
10.
PLoS Comput Biol ; 9(4): e1003012, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637584

RESUMEN

Nuclear receptor proteins constitute a superfamily of proteins that function as ligand dependent transcription factors. They are implicated in the transcriptional cascades underlying many physiological phenomena, such as embryogenesis, cell growth and differentiation, and apoptosis, making them one of the major signal transduction paradigms in metazoans. Regulation of these receptors occurs through the binding of hormones, and in the case of the retinoic acid receptor (RAR), through the binding of retinoic acid (RA). In addition to this canonical scenario of RAR activity, recent discoveries have shown that RAR regulation also occurs as a result of phosphorylation. In fact, RA induces non-genomic effects, such as the activation of kinase signaling pathways, resulting in the phosphorylation of several targets including RARs themselves. In the case of RARα, phosphorylation of Ser369 located in loop L9-10 of the ligand-binding domain leads to an increase in the affinity for the protein cyclin H, which is part of the Cdk-activating kinase complex of the general transcription factor TFIIH. The cyclin H binding site in RARα is situated more than 40 Å from the phosphorylated serine. Using molecular dynamics simulations of the unphosphorylated and phosphorylated forms of the receptor RARα, we analyzed the structural implications of receptor phosphorylation, which led to the identification of a structural mechanism for the allosteric coupling between the two remote sites of interest. The results show that phosphorylation leads to a reorganization of a local salt bridge network, which induces changes in helix extension and orientation that affects the cyclin H binding site. This results in changes in conformation and flexibility of the latter. The high conservation of the residues implicated in this signal transduction suggests a mechanism that could be applied to other nuclear receptor proteins.


Asunto(s)
Regulación de la Expresión Génica , Receptores de Ácido Retinoico/metabolismo , Regulación Alostérica , Sitio Alostérico , Animales , Sitios de Unión , Núcleo Celular/metabolismo , Simulación por Computador , Cristalografía por Rayos X , Ciclina H/química , Ligandos , Ratones , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína , Receptor alfa de Ácido Retinoico , Sales (Química)/química , Serina/química , Transducción de Señal , Solventes/química , Activación Transcripcional , Tretinoina/metabolismo
11.
J Chem Inf Model ; 53(9): 2471-82, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23957210

RESUMEN

Characterizing the variability within an ensemble of protein structures is a common requirement in structural biology and bioinformatics. With the increasing number of protein structures becoming available, there is a need for new tools capable of automating the structural comparison of large ensemble of structures. We present Protein Structural Statistics (PSS), a command-line program written in Perl for Unix-like environments, dedicated to the calculation of structural statistics for a set of proteins. PSS can perform multiple sequence alignments, structure superpositions, calculate Cartesian and dihedral coordinate statistics, and execute cluster analyses. An HTML report that contains a convenient summary of results with figures, tables, and hyperlinks can also be produced. PSS is a new tool providing an automated way to compare multiple structures. It integrates various types of structural analyses through an user-friendly and flexible interface, facilitating the access to powerful but more specialized programs. PSS is easy to modify and extend and is distributed under a free and open source license. The relevance of PSS is illustrated by examples of application to pertinent biological problems.


Asunto(s)
Biología Computacional/métodos , Proteínas/química , Programas Informáticos , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Proteínas/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo
12.
Mol Biol Evol ; 28(7): 2125-37, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21297158

RESUMEN

The human nuclear retinoic acid (RA) receptor alpha (hRARα) is a ligand-dependent transcriptional regulator, which is controlled by a phosphorylation cascade. The cascade starts with the RA-induced phosphorylation of a serine residue located in the ligand-binding domain, S(LBD), allowing the recruitment of the cdk7/cyclin H/MAT1 subcomplex of TFIIH through the docking of cyclin H. It ends by the subsequent phosphorylation by cdk7 of an other serine located in the N-terminal domain, S(NTD). Here, we show that this cascade relies on an increase in the flexibility of the domain involved in cyclin H binding, subsequently to the phosphorylation of S(LBD). Owing to the functional importance of RARα in several vertebrate species, we investigated whether the phosphorylation cascade was conserved in zebrafish (Danio rerio), which expresses two RARα genes: RARα-A and RARα-B. We found that in zebrafish RARαs, S(LBD) is absent, whereas S(NTD) is conserved and phosphorylated. Therefore, we analyzed the pattern of conservation of the phosphorylation sites and traced back their evolution. We found that S(LBD) is most often absent outside mammalian RARα and appears late during vertebrate evolution. In contrast, S(NTD) is conserved, indicating that the phosphorylation of this functional site has been under ancient high selection constraint. This suggests that, during evolution, different regulatory circuits control RARα activity.


Asunto(s)
Evolución Molecular , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/genética , Serina/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Dominio Catalítico , Chlorocebus aethiops , Ciclina H/química , Ciclina H/metabolismo , Humanos , Immunoblotting , Ratones , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Fosforilación , Filogenia , Prolina , Receptores de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Alineación de Secuencia , Pez Cebra
13.
J Med Chem ; 65(7): 5821-5829, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35302785

RESUMEN

1α,25-dihydroxyvitamin D3 (1,25D3) regulates many physiological processes in vertebrates by binding to the vitamin D receptor (VDR). Phylogenetic analysis indicates that jawless fishes are the most basal vertebrates exhibiting a VDR gene. To elucidate the mechanism driving VDR activation during evolution, we determined the crystal structure of the VDR ligand-binding domain (LBD) complex from the basal vertebratePetromyzon marinus, sea lamprey (lVDR). Comparison of three-dimensional crystal structures of the lVDR-1,25D3 complex with higher vertebrate VDR-1,25D3 structures suggests that 1,25D3 binds to lVDR similarly to human VDR, but with unique features for lVDR around linker regions between H11 and H12 and between H9 and H10. These structural differences may contribute to the marked species differences in transcriptional responses. Furthermore, residue co-evolution analysis of VDR across vertebrates identifies amino acid positions in H9 and the large insertion domain VDR LBD specific as correlated.


Asunto(s)
Lampreas , Receptores de Calcitriol , Animales , Lampreas/metabolismo , Ligandos , Filogenia , Unión Proteica , Receptores de Calcitriol/metabolismo , Vitamina D
14.
Environ Int ; 163: 107203, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35364415

RESUMEN

Toxicity mediated by per- and polyfluoroalkyl substances (PFAS), and especially perfluoroalkyl acids (PFAAs), has been linked to activation of peroxisome proliferator-activated receptors (Ppar) in many vertebrates. Here, we present the primary structures, phylogeny, and tissue-specific distributions of the Atlantic cod (Gadus morhua) gmPpara1, gmPpara2, gmPparb, and gmPparg, and demonstrate that the carboxylic acids PFHxA, PFOA, PFNA, as well as the sulfonic acid PFHxS, activate gmPpara1 in vitro, which was also supported by in silico analyses. Intriguingly, a binary mixture of PFOA and the non-activating PFOS produced a higher activation of gmPpara1 compared to PFOA alone, suggesting that PFOS has a potentiating effect on receptor activation. Supporting the experimental data, docking and molecular dynamics simulations of single and double-ligand complexes led to the identification of a putative allosteric binding site, which upon binding of PFOS stabilizes an active conformation of gmPpara1. Notably, binary exposures of gmPpara1, gmPpara2, and gmPparb to model-agonists and PFAAs produced similar potentiating effects. This study provides novel mechanistic insights into how PFAAs may modulate the Ppar signaling pathway by either binding the canonical ligand-binding pocket or by interacting with an allosteric binding site. Thus, individual PFAAs, or mixtures, could potentially modulate the Ppar-signaling pathway in Atlantic cod by interfering with at least one gmPpar subtype.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Gadus morhua , Ácidos Alcanesulfónicos/toxicidad , Animales , Fluorocarburos/análisis , Hormonas Esteroides Gonadales , Ligandos , Receptores Activados del Proliferador del Peroxisoma
15.
J Comput Chem ; 31(13): 2434-51, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20652987

RESUMEN

We describe the development of force field parameters for methylated lysines and arginines, and acetylated lysine for the CHARMM all-atom force field. We also describe a CHARMM united-atom force field for modified sidechains suitable for use with fragment-based docking methods. The development of these parameters is based on results of ab initio quantum mechanics calculations of model compounds with subsequent refinement and validation by molecular mechanics and molecular dynamics simulations. The united-atom parameters are tested by fragment docking to target proteins using the MCSS procedure. The all-atom force field is validated by molecular dynamics simulations of multiple experimental structures. In both sets of calculations, the computational predictions using the force field were compared to the corresponding experimental structures. We show that the parameters yield an accurate reproduction of experimental structures. Together with the existing CHARMM force field, these parameters will enable the general modeling of post-translational modifications of histone tails.


Asunto(s)
Histonas/química , Simulación de Dinámica Molecular , Estructura Molecular , Teoría Cuántica
16.
Eur Biophys J ; 39(11): 1503-12, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20496064

RESUMEN

Peroxisome proliferator-activated receptor-γ nuclear receptor (PPAR-γ) belongs to the superfamily of nuclear receptor proteins that function as ligand-dependent transcription factors and plays a specific physiological role as a regulator of lipid metabolism. A number of experimental studies have suggested that allostery plays an important role in the functioning of PPAR-γ. Here we use normal-mode analysis of PPAR-γ to characterize a network of dynamically coupled amino acids that link physiologically relevant binding surfaces such as the ligand-dependent activation domain AF-2 with the ligand binding site and the heterodimer interface. Multiple calculations were done in both the presence and absence of the agonist rosiglitazone, and the differences in dynamics were characterized. The global dynamics of the ligand binding domain were affected by the ligand, and in particular, changes to the network of dynamically correlated amino acids were observed with only small changes in conformation. These results suggest that changes in dynamic couplings can be functionally significant with respect to the transmission of allosteric signals.


Asunto(s)
PPAR gamma/química , PPAR gamma/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Humanos , Ligandos , Modelos Moleculares , Movimiento , PPAR gamma/agonistas , Unión Proteica , Estabilidad Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Rosiglitazona , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacología , Vibración
17.
Proteins ; 76(4): 977-94, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19350618

RESUMEN

The conformational dynamics of the I-like and Hybrid domains from the beta3 integrin headpiece were studied by molecular dynamics simulation and normal mode analysis. Crystallographic structures of integrins show that the integrin headpiece can exist in largely different conformations manifested by a significant difference in the angle between the I-like and Hybrid domains. The relative orientation of these two domains is believed to be a crucial element of integrin function, as it may relate local structural modifications induced by ligand binding into large-scale conformational changes. To investigate the detailed mechanisms responsible for this coupling, we carried out molecular dynamics simulations of the I-like/Hybrid system and employed quasi-harmonic and normal mode analyses to characterize the large-scale motions. Our results show that the conformational transition of I-like and Hybrid domains inferred from crystallographic data is contained in the low-frequency dynamics of the system. Using targeted molecular dynamics simulations, we investigated the roles played by two structural elements of the I-like domain, the alpha7 and alpha1 helices, in the interdomain transition. From our results, we propose that these two helices function in tandem to initiate large-scale, interdomain conformational transition apparent in integrin activation and signaling.


Asunto(s)
Integrina beta3/química , Simulación por Computador , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Movimiento (Física) , Conformación Proteica , Estructura Terciaria de Proteína
18.
J Phys Chem A ; 113(43): 11783-92, 2009 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-19780520

RESUMEN

Knowledge of the protonation states of the ionizable residues in an enzyme is a prerequisite to an accurate description of its structure and mechanism. In practice, the use of the inappropriate protonation state for an amino acid in a molecular modeling computation (e.g., molecular dynamics simulation) is likely to lead to unrealistic results. Although methods using solvers of the linearized Poisson-Boltzmann equation have proven to yield accurate pK(a) predictions, they bear a number of limitations. They are quite demanding in terms of computational power and are sensitive to representation of the charges and their position (force field and protein conformation). Moreover they depend on the choice of a dielectric constant for the protein interior. In this manuscript, we describe the difficulties met when trying to predict the protonation state of a buried amino acid, located in a protein for which very little biochemical data is available. Such a case is highly representative of the challenges faced in theoretical biology studies. Proteinase 3 (PR3) is an enzyme involved in proteolytic events associated with inflammation. It is a potential target in the development of new anti-inflammatory therapeutic strategies. We report the results of pK(a) predictions of the aspartic acid 213 of PR3 with a FDPB solver. We probed the influence of the choice of the dielectric constant for the protein interior epsilon(p) and the benefits of conformational sampling by molecular dynamics (MD) on the pK(a) prediction of this carboxylate group. Using only the FDPB calculations, we could not conclude on the protonation state of Asp213. MD simulations confronted to knowledge of the ligand-binding and reaction mechanism led us to decide on a protonated form of this aspartic acid. We also demonstrate that the use of the wrong protonation state leads to an unreliable structural model for PR3. pK(a) prediction with a fast empirical method yielded a pK(a) of 8.4 for Asp213, which is in agreement with our choice of protonation state based on MD simulations.


Asunto(s)
Ácido Aspártico , Mieloblastina/química , Mieloblastina/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Impedancia Eléctrica , Humanos , Ligandos , Simulación de Dinámica Molecular , Protones , Reproducibilidad de los Resultados , Electricidad Estática
19.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 2): 98-104, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30713160

RESUMEN

The retinoic X receptor (RXR) plays a crucial role in the superfamily of nuclear receptors (NRs) by acting as an obligatory partner of several nuclear receptors; its role as a transcription factor is thus critical in many signalling pathways, such as metabolism, cell development, differentiation and cellular death. The first published structure of the apo ligand-binding domain (LBD) of RXRα, which is still used as a reference today, contained inaccuracies. In the present work, these inaccuracies were corrected using modern crystallographic tools. The most important correction concerns the presence of a π-bulge in helix H7, which was originally built as a regular α-helix. The presence of several CHAPS molecules, which are visible for the first time in the electron-density map and which stabilize the H1-H3 loop, which contains helix H2, are also revealed. The apo RXR structure has played an essential role in deciphering the molecular mode of action of NR ligands and is still used in numerous biophysical studies. This refined structure should be used preferentially in the future in interpreting experiments as well as for modelling and structural dynamics studies of the apo RXRα LBD.


Asunto(s)
Apoproteínas/química , Apoproteínas/metabolismo , Receptor alfa X Retinoide/química , Receptor alfa X Retinoide/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos
20.
ACS Infect Dis ; 5(6): 1022-1034, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-30912430

RESUMEN

Bacterial sliding clamps control the access of DNA polymerases to the replication fork and are appealing targets for antibacterial drug development. It is therefore essential to decipher the polymerase-clamp binding mode across various bacterial species. Here, two residues of the E. coli clamp binding pocket, EcS346 and EcM362, and their cognate residues in M. tuberculosis and B. subtilis clamps, were mutated. The effects of these mutations on the interaction of a model peptide with these variant clamps were evaluated by thermodynamic, molecular dynamics, X-rays crystallography, and biochemical analyses. EcM362 and corresponding residues in Gram positive clamps occupy a strategic position where a mobile residue is essential for an efficient peptide interaction. EcS346 has a more subtle function that modulates the pocket folding dynamics, while the equivalent residue in B. subtilis is essential for polymerase activity and might therefore be a Gram positive-specific molecular marker. Finally, the peptide binds through an induced-fit process to Gram negative and positive pockets, but the complex stability varies according to a pocket-specific network of interactions.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Péptidos/farmacología , Cristalografía por Rayos X , ADN Polimerasa Dirigida por ADN/metabolismo , Desarrollo de Medicamentos , Escherichia coli/genética , Bacterias Grampositivas/genética , Ligandos , Modelos Moleculares , Mutación , Inhibidores de la Síntesis del Ácido Nucleico , Péptidos/química , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA