Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 37(4): 380-395, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38114195

RESUMEN

Bemisia tabaci (whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors. Effector B1 was identified using a bioinformatics-driven effector-mining strategy, whereas effectors S1 and P1 were identified in the saliva of whiteflies collected from artificial diet and in phloem exudate of tomato on which nymphs were feeding, respectively. These three effectors were B. tabaci specific and able to increase whitefly fecundity when transiently expressed in tobacco plants (Nicotiana tabacum). Moreover, they reduced growth of Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. All three effectors changed gene expression in planta, and B1 and S1 also changed phytohormone levels. Gene ontology and KEGG pathway enrichment analysis pinpointed plant-pathogen interaction and photosynthesis as the main enriched pathways for all three effectors. Our data thus show the discovery and validation of three new B. tabaci MEAM1 effectors that increase whitefly fecundity and modulate plant immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Hemípteros , Nicotiana , Animales , Nicotiana/genética , Nicotiana/microbiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Solanum lycopersicum/parasitología , Pseudomonas syringae/fisiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Fertilidad/genética
2.
Plant Biotechnol J ; 22(1): 248-261, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37822043

RESUMEN

Vascular wilt diseases caused by Fusarium oxysporum are a major threat to many agriculturally important crops. Genetic resistance is rare and inevitably overcome by the emergence of new races. To identify potentially durable and non-race-specific genetic resistance against Fusarium wilt diseases, we set out to identify effector targets in tomato that mediate susceptibility to the fungus. For this purpose, we used the SIX8 effector protein, an important and conserved virulence factor present in many pathogenic F. oxysporum isolates. Using protein pull-downs and yeast two-hybrid assays, SIX8 was found to interact specifically with two members of the tomato TOPLESS family: TPL1 and TPL2. Loss-of-function mutations in TPL1 strongly reduced disease susceptibility to Fusarium wilt and a tpl1;tpl2 double mutant exerted an even higher level of resistance. Similarly, Arabidopsis tpl;tpr1 mutants became significantly less diseased upon F. oxysporum inoculation as compared to wildtype plants. We conclude that TPLs encode susceptibility genes whose mutation can confer resistance to F. oxysporum.


Asunto(s)
Arabidopsis , Fusarium , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/microbiología , Solanum lycopersicum/genética , Factores de Virulencia/genética , Mutación/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
3.
Plant Physiol ; 182(1): 361-377, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31570508

RESUMEN

SNF1-RELATED PROTEIN KINASES 2 (SnRK2) are important components of early osmotic and salt stress signaling pathways in plants. The Arabidopsis (Arabidopsis thaliana) SnRK2 family comprises the abscisic acid (ABA)-activated protein kinases SnRK2.2, SnRK2.3, SnRK2.6, SnRK2.7, and SnRK2.8, and the ABA-independent subclass 1 protein kinases SnRK2.1, SnRK2.4, SnRK2.5, SnRK2.9, and SnRK2.10. ABA-independent SnRK2s act at the posttranscriptional level via phosphorylation of VARICOSE (VCS), a member of the mRNA decapping complex, that catalyzes the first step of 5'mRNA decay. Here, we identified VCS and VARICOSE RELATED (VCR) as interactors and phosphorylation targets of SnRK2.5, SnRK2.6, and SnRK2.10. All three protein kinases phosphorylated Ser-645 and Ser-1156 of VCS, whereas SnRK2.6 and SnRK2.10 also phosphorylated VCS Ser-692 and Ser-680 of VCR. We showed that subclass 1 SnRK2s, VCS, and 5' EXORIBONUCLEASE 4 (XRN4) are involved in regulating root growth under control conditions as well as modulating root system architecture in response to salt stress. Our results suggest interesting patterns of redundancy within subclass 1 SnRK2 protein kinases, with SnRK2.1, SnRK2.5, and SnRK2.9 controlling root growth under nonstress conditions and SnRK2.4 and SnRK2.10 acting mostly in response to salinity. We propose that subclass 1 SnRK2s function in root development under salt stress by affecting the transcript levels of aquaporins, as well as CYP79B2, an enzyme involved in auxin biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ARN Mensajero/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , Sales (Química)/farmacología , Transducción de Señal/efectos de los fármacos
4.
Clin Proteomics ; 18(1): 8, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602116

RESUMEN

BACKGROUND: Based on their potential to analyze aberrant cellular signaling in relation to biological function, kinase activity profiling in tumor biopsies by peptide microarrays and mass spectrometry-based phosphoproteomics may guide selection of protein kinase inhibitors in patients with cancer. Variable tissue handling procedures in clinical practice may influence protein phosphorylation status and kinase activity and therewith may hamper biomarker discovery. Here, the effect of cold ischemia time (CIT) on the stability of kinase activity and protein phosphorylation status in fresh-frozen clinical tissue samples was studied using peptide microarrays and mass spectrometry-based phosphoproteomics. METHODS: Biopsies of colorectal cancer resection specimens from five patients were collected and snap frozen immediately after surgery and at 6 additional time points between 0 and 180 min of CIT. Kinase activity profiling was performed for all samples using a peptide microarray. MS-based global phosphoproteomics was performed in tumors from 3 patients at 4 time points. Statistical and cluster analyses were performed to analyze changes in kinase activity and phosphoproteome resulting from CIT. RESULTS: Unsupervised cluster analysis of kinase activity and phosphoproteome data revealed that samples from the same patients cluster together. Continuous ANOVA analysis of all 7 time points for 5 patient samples resulted in 4 peptides out of 210 (2%) with significantly (p < 0.01 and fold change > 2) altered signal intensity in time. In 4 out of 5 patients tumor kinase activity was stable with CIT. MS-based phosphoproteomics resulted in the detection of 10,488 different phosphopeptides with on average 6044 phosphopeptides per tumor sample. 2715 phosphopeptides were detected in all samples at time point 0, of which 90 (3.3%) phosphopeptides showed significant changes in intensity with CIT (p < 0.01). Only two phosphopeptides were significantly changed in all time points, including one peptide (PKP3) with a fold change > 2. CONCLUSIONS: The vast majority of the phosphoproteome as well as the activity of protein kinases in colorectal cancer resection tissue is stable up to 180 min of CIT and reflects tumor characteristics. However, specific changes in kinase activity with increasing CIT were observed. Therefore, stringent tissue collection procedures are advised to minimize changes in kinase activity during CIT.

5.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34502250

RESUMEN

Bacillus subtilis vegetative cells switch to sporulation upon nutrient limitation. To investigate the proteome dynamics during sporulation, high-resolution time-lapse proteomics was performed in a cell population that was induced to sporulate synchronously. Here, we are the first to comprehensively investigate the changeover of sporulation regulatory proteins, coat proteins, and other proteins involved in sporulation and spore biogenesis. Protein co-expression analysis revealed four co-expressed modules (termed blue, brown, green, and yellow). Modules brown and green are upregulated during sporulation and contain proteins associated with sporulation. Module blue is negatively correlated with modules brown and green, containing ribosomal and metabolic proteins. Finally, module yellow shows co-expression with the three other modules. Notably, several proteins not belonging to any of the known transcription regulons were identified as co-expressed with modules brown and green, and might also play roles during sporulation. Finally, levels of some coat proteins, for example morphogenetic coat proteins, decreased late in sporulation.


Asunto(s)
Bacillus subtilis/metabolismo , Bacillus subtilis/fisiología , Proteoma/análisis , Proteoma/metabolismo , Esporas Bacterianas/metabolismo , Esporas Bacterianas/fisiología , Bacillus subtilis/citología , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Esporas Bacterianas/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
6.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830357

RESUMEN

Membrane proteins are fascinating since they play an important role in diverse cellular functions and constitute many drug targets. Membrane proteins are challenging to analyze. The spore, the most resistant form of known life, harbors a compressed inner membrane. This membrane acts not only as a barrier for undesired molecules but also as a scaffold for proteins involved in signal transduction and the transport of metabolites during spore germination and subsequent vegetative growth. In this study, we adapted a membrane enrichment method to study the membrane proteome of spores and cells of the food-borne pathogen Bacillus cereus using quantitative proteomics. Using bioinformatics filtering we identify and quantify 498 vegetative cell membrane proteins and 244 spore inner membrane proteins. Comparison of vegetative and spore membrane proteins showed there were 54 spore membrane-specific and 308 cell membrane-specific proteins. Functional characterization of these proteins showed that the cell membrane proteome has a far larger number of transporters, receptors and proteins related to cell division and motility. This was also reflected in the much higher expression level of many of these proteins in the cellular membrane for those proteins that were in common with the spore inner membrane. The spore inner membrane had specific expression of several germinant receptors and spore-specific proteins, but also seemed to show a preference towards the use of simple carbohydrates like glucose and fructose owing to only expressing transporters for these. These results show the differences in membrane proteome composition and show us the specific proteins necessary in the inner membrane of a dormant spore of this toxigenic spore-forming bacterium to survive adverse conditions.


Asunto(s)
Bacillus cereus/genética , Proteínas Bacterianas/genética , Enfermedades Transmitidas por los Alimentos/genética , Proteoma/genética , Bacillus cereus/patogenicidad , Proteínas Bacterianas/clasificación , Membrana Celular/genética , Contaminación de Alimentos , Microbiología de Alimentos , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/genética , Proteómica , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/patogenicidad
7.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34361002

RESUMEN

Platelets are involved in tumor angiogenesis and cancer progression. Previous studies indicated that cancer could affect platelet content. In the current study, we investigated whether cancer-associated proteins can be discerned in the platelets of cancer patients, and whether antitumor treatment may affect the platelet proteome. Platelets were isolated from nine patients with different cancer types and ten healthy volunteers. From three patients, platelets were isolated before and after the start of antitumor treatment. Mass spectrometry-based proteomics of gel-fractionated platelet proteins were used to compare patients versus controls and before and after treatment initiation. A total of 4059 proteins were detected, of which 50 were significantly more abundant in patients, and 36 more in healthy volunteers. Eight of these proteins overlapped with our previous cancer platelet proteomics study. From these data, we selected potential biomarkers of cancer including six upregulated proteins (RNF213, CTSG, PGLYRP1, RPL8, S100A8, S100A9) and two downregulated proteins (GPX1, TNS1). Antitumor treatment resulted in increased levels of 432 proteins and decreased levels of 189 proteins. In conclusion, the platelet proteome may be affected in cancer patients and platelets are a potential source of cancer biomarkers. In addition, we found in a small group of patients that anticancer treatment significantly changes the platelet proteome.


Asunto(s)
Plaquetas/metabolismo , Neoplasias del Sistema Digestivo/sangre , Proteoma/metabolismo , Anciano , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias del Sistema Digestivo/tratamiento farmacológico , Neoplasias del Sistema Digestivo/genética , Neoplasias del Sistema Digestivo/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteoma/genética
8.
J Cell Physiol ; 235(11): 8085-8097, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31960422

RESUMEN

In non-small cell lung cancer, sensitizing mutations in epidermal growth factor receptor (EGFR) or cMET amplification serve as good biomarkers for targeted therapies against EGFR or cMET, respectively. Here we aimed to determine how this different genetic background would affect the interaction between the EGFR-inhibitor erlotinib and the cMET-inhibitor crizotinib. To unravel the mechanism of synergy we investigated the effect of the drugs on various parameters, including cell cycle arrest, migration, protein phosphorylation, kinase activity, the expression of drug efflux pumps, intracellular drug concentrations, and live-cell microscopy. We observed additive effects in EBC-1, H1975, and HCC827, and a strong synergism in the HCC827GR5 cell line. This cell line is a clone of the HCC827 cells that harbor an EGFR exon 19 deletion and has been made resistant to the EGFR-inhibitor gefitinib, resulting in cMET amplification. Remarkably, the intracellular concentration of crizotinib was significantly higher in HCC827GR5 compared to the parental HCC827 cell line. Furthermore, live-cell microscopy with a pH-sensitive probe showed a differential reaction of the pH in the cytoplasm and the lysosomes after drug treatment in the HCC827GR5 in comparison with the HCC827 cells. This change in pH could influence the process of lysosomal sequestration of drugs. These results led us to the conclusion that lysosomal sequestration is involved in the strong synergistic reaction of the HCC827GR5 cell line to crizotinib-erlotinib combination. This finding warrants future clinical studies to evaluate whether genetic background and lysosomal sequestration could guide tailored therapeutic interventions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Lisosomas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Crizotinib/farmacología , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Gefitinib/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mutación/genética , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores
9.
Angiogenesis ; 21(2): 325-334, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29532289

RESUMEN

INTRODUCTION: At the clinical introduction of antiangiogenic agents as anticancer agents, no major toxicities were expected as merely just endothelial cells (ECs) in tumors would be affected. However, several (serious) toxicities became apparent, of which underlying mechanisms are largely unknown. We investigated to what extent sunitinib (multitargeted antiangiogenic tyrosine kinase inhibitor (TKI)), sorafenib (TKI) and bevacizumab [specific antibody against vascular endothelial growth factor (VEGF)] may impair platelet function, which might explain treatment-related bleedings. MATERIALS AND METHODS: In vitro, the influence of sunitinib, sorafenib, and bevacizumab on platelet aggregation, P-selectin expression and fibrinogen binding, platelet-EC interaction, and tyrosine phosphorylation of c-Src was studied by optical aggregation, flow cytometry, real-time perfusion, and western blotting. Ex vivo, platelet aggregation was analyzed in 25 patients upon sunitinib or bevacizumab treatment. Concentrations of sunitinib, VEGF, and platelet and EC activation markers were measured by LC-MS/MS and ELISA. RESULTS: In vitro, sunitinib and sorafenib significantly inhibited platelet aggregation (20 µM sunitinib: 71.3%, p < 0.001; 25 µM sorafenib: 55.8%, p = 0.042). Sorafenib and sunitinib significantly inhibited P-selectin expression on platelets. Exposure to both TKIs resulted in a reduced tyrosine phosphorylation of c-Src. Ex vivo, within 24 h sunitinib impaired platelet aggregation (83.0%, p = 0.001, N = 8). Plasma concentrations of sunitinib, VEGF, and platelet/EC activation markers were not correlated with disturbed aggregation. In contrast, bevacizumab only significantly impaired platelet aggregation in vitro at high concentrations, but not ex vivo. CONCLUSION: Sunitinib significantly inhibits platelet aggregation in patients already after 24 h of first administration, whereas bevacizumab had no effect on aggregation. These findings may explain the clinically observed bleedings during treatment with antiangiogenic TKIs.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Bevacizumab/farmacología , Plaquetas/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Sorafenib/farmacología , Sunitinib/farmacología , Proteína Tirosina Quinasa CSK , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Selectina-P/metabolismo , Familia-src Quinasas/metabolismo
10.
Oncologist ; 23(10): 1135-e118, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30018133

RESUMEN

LESSONS LEARNED: Clinically applicable tools are needed for treatment selection and repurposing of available protein kinase inhibitors (PKIs) in patients with advanced solid tumors refractory to standard treatment.Using a tyrosine kinase peptide substrate microarray, observed inhibitory activity in vitro could not sufficiently predict clinical benefit of treatment with the selected PKI. BACKGROUND: This exploratory molecular profiling study determined the feasibility and benefit of the selection of protein kinase inhibitors (PKIs) based on kinase activity profiling in patients with refractory solid malignancies. METHODS: Adult patients with biopsy-accessible refractory solid tumors were eligible. Per patient, the inhibitory potency of sunitinib, dasatinib, erlotinib, sorafenib, everolimus, and lapatinib was determined in tumor lysates from fresh biopsies using a tyrosine kinase peptide substrate microarray. The most active PKI in this in vitro assay was selected for treatment. RESULTS: Thirteen patients were enrolled in the feasibility part and underwent tumor biopsy. Of 12 patients in whom kinase activity profiling was performed, 11 started treatment with a selected PKI: dasatinib in 8, sunitinib in 2, and erlotinib in 1 patient(s). Eight patients were evaluable for response. One patient had stable disease (SD) >4 months on sunitinib; one patient had SD at 6 weeks but progressive disease (PD) at 12 weeks. The remaining patients had PD after 6 weeks of treatment. CONCLUSION: Kinase inhibition profiles of multiple PKIs can be reliably determined using fresh tumor biopsies from patients with refractory solid tumors. However, the current in vitro microarray selection approach insufficiently predicted clinical benefit of PKI treatment in these patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Adulto , Anciano , Dasatinib/uso terapéutico , Clorhidrato de Erlotinib/uso terapéutico , Everolimus/uso terapéutico , Femenino , Humanos , Lapatinib/uso terapéutico , Masculino , Persona de Mediana Edad , Sorafenib/uso terapéutico , Sunitinib/uso terapéutico
11.
J Proteome Res ; 15(2): 585-94, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26731423

RESUMEN

The endospore is the dormant form of Bacillus subtilis and many other Firmicutes. By sporulation, these spore formers can survive very harsh physical and chemical conditions. Yet, they need to go through germination to return to their growing form. The spore inner membrane (IM) has been shown to play an essential role in triggering the initiation of germination. In this study, we isolated the IM of bacterial spores, in parallel with the isolation of the membrane of vegetative cells. With the use of GeLC-MS/MS, over 900 proteins were identified from the B. subtilis spore IM preparations. By bioinformatics-based membrane protein predictions, ca. one-third could be predicted to be membrane-localized. A large number of unique proteins as well as proteins common to the two membrane proteomes were identified. In addition to previously known IM proteins, a number of IM proteins were newly identified, at least some of which are likely to provide new insights into IM physiology, unveiling proteins putatively involved in spore germination machinery and hence putative germination inhibition targets.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/clasificación , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Proteínas de la Membrana/clasificación , Microscopía Electrónica de Transmisión , Proteoma/clasificación , Esporas Bacterianas/ultraestructura , Espectrometría de Masas en Tándem
12.
Biochim Biophys Acta ; 1854(10 Pt A): 1269-79, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26049081

RESUMEN

Time-series transcript- and protein-profiles were measured upon initiation of carbon catabolite repression in Escherichia coli, in order to investigate the extent of post-transcriptional control in this prototypical response. A glucose-limited chemostat culture was used as the CCR-free reference condition. Stopping the pump and simultaneously adding a pulse of glucose, that saturated the cells for at least 1h, was used to initiate the glucose response. Samples were collected and subjected to quantitative time-series analysis of both the transcriptome (using microarray analysis) and the proteome (through a combination of 15N-metabolic labeling and mass spectrometry). Changes in the transcriptome and corresponding proteome were analyzed using statistical procedures designed specifically for time-series data. By comparison of the two sets of data, a total of 96 genes were identified that are post-transcriptionally regulated. This gene list provides candidates for future in-depth investigation of the molecular mechanisms involved in post-transcriptional regulation during carbon catabolite repression in E. coli, like the involvement of small RNAs.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Glucosa/deficiencia , Proteoma , Transcriptoma , Reactores Biológicos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Marcaje Isotópico , Análisis por Micromatrices , Anotación de Secuencia Molecular , Isótopos de Nitrógeno , Factores de Tiempo
13.
Int J Cancer ; 138(12): 3002-10, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26815723

RESUMEN

Mass spectrometry-based phosphoproteomics provides a unique unbiased approach to evaluate signaling network in cancer cells. The tyrosine kinase inhibitor sunitinib is registered as treatment for patients with renal cell cancer (RCC). We investigated the effect of sunitinib on tyrosine phosphorylation in RCC tumor cells to get more insight in its mechanism of action and thereby to find potential leads for combination treatment strategies. Sunitinib inhibitory concentrations of proliferation (IC50) of 786-O, 769-p and A498 RCC cells were determined by MTT-assays. Global tyrosine phosphorylation was measured by LC-MS/MS after immunoprecipitation with the antiphosphotyrosine antibody p-TYR-100. Phosphoproteomic profiling of 786-O cells yielded 1519 phosphopeptides, corresponding to 675 unique proteins including 57 different phosphorylated protein kinases. Compared to control, incubation with sunitinib at its IC50 of 2 µM resulted in downregulation of 86 phosphopeptides including CDK5, DYRK3, DYRK4, G6PD, PKM and LDH-A, while 94 phosphopeptides including Axl, FAK, EPHA2 and p38α were upregulated. Axl- (y702), FAK- (y576) and p38α (y182) upregulation was confirmed by Western Blot in 786-O and A498 cells. Subsequent proliferation assays revealed that inhibition of Axl with a small molecule inhibitor (R428) sensitized 786-O RCC cells and immortalized endothelial cells to sunitinib up to 3 fold. In conclusion, incubation with sunitinib of RCC cells causes significant upregulation of multiple phosphopeptides including Axl. Simultaneous inhibition of Axl improves the antitumor activity of sunitinib. We envision that evaluation of phosphoproteomic changes by TKI treatment enables identification of new targets for combination treatment strategies.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Renales/metabolismo , Indoles/farmacología , Neoplasias Renales/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Pirroles/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular , Ontología de Genes , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Concentración 50 Inhibidora , Neoplasias Renales/tratamiento farmacológico , Fosforilación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal , Sunitinib , Tirosina Quinasa del Receptor Axl
14.
Metab Eng ; 35: 83-94, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26869136

RESUMEN

Retinal-based photosynthesis may contribute to the free energy conversion needed for growth of an organism carrying out oxygenic photosynthesis, like a cyanobacterium. After optimization, this may even enhance the overall efficiency of phototrophic growth of such organisms in sustainability applications. As a first step towards this, we here report on functional expression of the archetype proteorhodopsin in Synechocystis sp. PCC 6803. Upon use of the moderate-strength psbA2 promoter, holo-proteorhodopsin is expressed in this cyanobacterium, at a level of up to 10(5) molecules per cell, presumably in a hexameric quaternary structure, and with approximately equal distribution (on a protein-content basis) over the thylakoid and the cytoplasmic membrane fraction. These results also demonstrate that Synechocystis sp. PCC 6803 has the capacity to synthesize all-trans-retinal. Expressing a substantial amount of a heterologous opsin membrane protein causes a substantial growth retardation Synechocystis, as is clear from a strain expressing PROPS, a non-pumping mutant derivative of proteorhodopsin. Relative to this latter strain, proteorhodopsin expression, however, measurably stimulates its growth.


Asunto(s)
Expresión Génica , Rodopsinas Microbianas/biosíntesis , Synechocystis/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Rodopsinas Microbianas/genética , Synechocystis/genética
15.
Int J Mol Sci ; 17(11)2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27792189

RESUMEN

The structural maintenance of chromosomes (SMC) protein complexes shape and regulate the structure and dynamics of chromatin, thereby controlling many chromosome-based processes such as cell cycle progression, differentiation, gene transcription and DNA repair. The SMC5/6 complex is previously described to promote DNA double-strand breaks (DSBs) repair by sister chromatid recombination, and found to be essential for resolving recombination intermediates during meiotic recombination. Moreover, in budding yeast, SMC5/6 provides structural organization and topological stress relief during replication in mitotically dividing cells. Despite the essential nature of the SMC5/6 complex, the versatile mechanisms by which SMC5/6 functions and its molecular regulation in mammalian cells remain poorly understood. By using a human osteosarcoma cell line (U2OS), we show that after the CRISPR-Cas9-mediated removal of the SMC5/6 subunit NSMCE2, treatment with the topoisomerase II inhibitor etoposide triggered an increased sensitivity in cells lacking NSMCE2. In contrast, NSMCE2 appeared not essential for a proper DNA damage response or cell survival after DSB induction by ionizing irradiation (IR). Interestingly, by way of immunoprecipitations (IPs) and mass spectrometry, we found that the SMC5/6 complex physically interacts with the DNA topoisomerase II α (TOP2A). We therefore propose that the SMC5/6 complex functions in resolving TOP2A-mediated DSB-repair intermediates generated during replication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Ligasas/metabolismo , Antígenos de Neoplasias/metabolismo , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Proteínas Cromosómicas no Histona , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Etopósido/efectos adversos , Humanos , Ligasas/genética , Proteínas de Unión a Poli-ADP-Ribosa , Mapas de Interacción de Proteínas , Inhibidores de Topoisomerasa II/efectos adversos
16.
J Proteome Res ; 14(5): 2169-76, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25853650

RESUMEN

Bacillus weihenstephanensis is a subspecies of the Bacillus cereus sensu lato group of spore-forming bacteria known to cause food spoilage or food poisoning. The key distinguishing phenotype of B. weihenstephanensis is its ability to grow below 7 °C or, from a food safety perspective, to grow and potentially produce toxins in a refrigerated environment. Comparison of the proteome profile of B. weihenstephanensis upon its exposure to different culturing conditions can reveal clues to the mechanistic basis of its psychrotolerant phenotype as well as elucidate relevant aspects of its toxigenic profile. To this end, the genome of the type strain B. weihenstephanensis WSBC 10204 was sequenced and annotated. Subsequently, the proteome profiles of cells grown at either 6 or 30 °C were compared, which revealed considerable differences and indicated several hundred (uncharacterized) proteins as being subproteome- and/or temperature-specific. In this manner, several processes were newly indicated to be dependent on growth temperature, such as varying carbon flux routes and a different role for the urea cycle. Furthermore, a possible post-translational regulatory function for acetylation was suggested. Toxin production was determined to be largely independent of growth temperature.


Asunto(s)
Bacillus cereus/genética , Proteínas Bacterianas/genética , Genoma Bacteriano , Procesamiento Proteico-Postraduccional , Proteoma/genética , Acetilación , Bacillus cereus/metabolismo , Proteínas Bacterianas/metabolismo , Ciclo del Carbono/fisiología , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Enterotoxinas , Microbiología de Alimentos , Isoformas de Proteínas , Proteoma/metabolismo , Análisis de Secuencia de ADN , Temperatura , Urea/metabolismo
17.
Anal Chem ; 87(10): 5387-94, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25894977

RESUMEN

Stationary-phase-assisted modulation is used to overcome one of the limitations of contemporary comprehensive two-dimensional liquid chromatography, which arises from the combination of a first-dimension column that is typically narrow and long and a second-dimension column that is wide and short. Shallow gradients at low flow rates are applied in the first dimension, whereas fast analyses (at high flow rates) are required in the second dimension. Limitations of this approach include a low sample capacity of the first-dimension column and a high dilution of the sample in the complete system. Moreover, the relatively high flow rates used for the second dimension make direct (splitless) hyphenation to mass spectrometry difficult. In the present study we demonstrate that stationary-phase-assisted modulation can be implemented in an online comprehensive two-dimensional LC (LC × LC) setup to shift this paradigm. The proposed active modulation makes it possible to choose virtually any combination of first- and second-dimension column diameters without loss in system performance. In the current setup, a 0.30 mm internal diameter first-dimension column with a relatively high loadability is coupled to a 0.075 mm internal diameter second-dimension column. This actively modulated system is coupled to a nanoelectrospray high-resolution mass spectrometer and applied for the separation of the tryptic peptides of a six-protein mixture and for the proteome-wide analyses of yeast from Saccharomyces cerevisiae. In the latter application, about 20000 MS/MS spectra are generated within 24 h analysis time, resulting in the identification of 701 proteins.


Asunto(s)
Proteómica/métodos , Saccharomyces cerevisiae/metabolismo , Métodos Analíticos de la Preparación de la Muestra , Cromatografía Liquida , Sales (Química)/química , Espectrometría de Masas en Tándem
18.
FEMS Yeast Res ; 15(8)2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26546455

RESUMEN

Attachment to human host tissues or abiotic medical devices is a key step in the development of infections by Candida glabrata. The genome of this pathogenic yeast codes for a large number of adhesins, but proteomic work using reference strains has shown incorporation of only few adhesins in the cell wall. By making inventories of the wall proteomes of hyperadhesive clinical isolates and reference strain CBS138 using mass spectrometry, we describe the cell wall proteome of C. glabrata and tested the hypothesis that hyperadhesive isolates display differential incorporation of adhesins. Two clinical strains (PEU382 and PEU427) were selected, which both were hyperadhesive to polystyrene and showed high surface hydrophobicity. Cell wall proteome analysis under biofilm-forming conditions identified a core proteome of about 20 proteins present in all C. glabrata strains. In addition, 12 adhesin-like wall proteins were identified in the hyperadherent strains, including six novel adhesins (Awp8-13) of which only Awp12 was also present in CBS138. We conclude that the hyperadhesive capacity of these two clinical C. glabrata isolates is correlated with increased and differential incorporation of cell wall adhesins. Future studies should elucidate the role of the identified proteins in the establishment of C. glabrata infections.


Asunto(s)
Candida glabrata/química , Pared Celular/química , Proteínas Fúngicas/análisis , Proteoma/análisis , Candida glabrata/aislamiento & purificación , Candidiasis/microbiología , Humanos , Espectrometría de Masas , Proteómica
19.
J Cell Sci ; 125(Pt 19): 4651-61, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22797920

RESUMEN

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) triggers apoptosis selectively in tumor cells through interaction with TRAIL-R1/DR4 or TRAIL-R2/DR5 and this process is considered a promising avenue for cancer treatment. TRAIL resistance, however, is frequently encountered and hampers anti-cancer activity. Here we show that whereas H460 non-small cell lung cancer (NSCLC) cells display canonical TRAIL-dependent apoptosis, A549 and SW1573 NSCLC cells are TRAIL resistant and display pro-tumorigenic activity, in particular invasion, following TRAIL treatment. We exploit this situation to contrast TRAIL effects on the kinome of apoptosis-sensitive cells to that of NSCLC cells in which non-canonical effects predominate, employing peptide arrays displaying 1024 different kinase pseudosubstrates more or less comprehensively covering the human kinome. We observed that failure of a therapeutic response to TRAIL coincides with the activation of a non-canonical TRAIL-induced signaling pathway involving, amongst others, Src, STAT3, FAK, ERK and Akt. The use of selective TRAIL variants against TRAIL-R1 or TRAIL-R2 subsequently showed that this non-canonical migration and invasion is mediated through TRAIL-R2. Short-hairpin-mediated silencing of RIP1 kinase prevented TRAIL-induced Src and STAT3 phosphorylation and reduced TRAIL-induced migration and invasion of A549 cells. Inhibition of Src or STAT3 by shRNA or chemical inhibitors including dasatinib and 5,15-diphenylporphyrin blocked TRAIL-induced invasion. FAK, AKT and ERK were activated in a RIP1-independent way and inhibition of AKT sensitized A549 cells to TRAIL-induced apoptosis. We thus identified RIP1-dependent and -independent non-canonical TRAIL kinase cascades in which Src and AKT are instrumental and could be exploited as co-targets in TRAIL therapy for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteoma/metabolismo , Transducción de Señal , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Modelos Biológicos , Invasividad Neoplásica , Proteínas de Neoplasias/metabolismo , Fosforilación/efectos de los fármacos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
20.
Appl Environ Microbiol ; 80(7): 2229-39, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24487531

RESUMEN

Hydrogen peroxide production is a well-known trait of many bacterial species associated with the human body. In the presence of oxygen, the probiotic lactic acid bacterium Lactobacillus johnsonii NCC 533 excretes up to 1 mM H(2)O(2), inducing growth stagnation and cell death. Disruption of genes commonly assumed to be involved in H(2)O(2) production (e.g., pyruvate oxidase, NADH oxidase, and lactate oxidase) did not affect this. Here we describe the purification of a novel NADH-dependent flavin reductase encoded by two highly similar genes (LJ_0548 and LJ_0549) that are conserved in lactobacilli belonging to the Lactobacillus acidophilus group. The genes are predicted to encode two 20-kDa proteins containing flavin mononucleotide (FMN) reductase conserved domains. Reductase activity requires FMN, flavin adenine dinucleotide (FAD), or riboflavin and is specific for NADH and not NADPH. The Km for FMN is 30 ± 8 µM, in accordance with its proposed in vivo role in H(2)O(2) production. Deletion of the encoding genes in L. johnsonii led to a 40-fold reduction of hydrogen peroxide formation. H(2)O(2) production in this mutant could only be restored by in trans complementation of both genes. Our work identifies a novel, conserved NADH-dependent flavin reductase that is prominently involved in H(2)O(2) production in L. johnsonii.


Asunto(s)
Coenzimas/metabolismo , FMN Reductasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Lactobacillus/metabolismo , NAD/metabolismo , FMN Reductasa/química , FMN Reductasa/aislamiento & purificación , Eliminación de Gen , Prueba de Complementación Genética , Cinética , Peso Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA