Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 621(7978): 415-422, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37674080

RESUMEN

DNA double-strand breaks (DSBs) are deleterious lesions that challenge genome integrity. To mitigate this threat, human cells rely on the activity of multiple DNA repair machineries that are tightly regulated throughout the cell cycle1. In interphase, DSBs are mainly repaired by non-homologous end joining and homologous recombination2. However, these pathways are completely inhibited in mitosis3-5, leaving the fate of mitotic DSBs unknown. Here we show that DNA polymerase theta6 (Polθ) repairs mitotic DSBs and thereby maintains genome integrity. In contrast to other DSB repair factors, Polθ function is activated in mitosis upon phosphorylation by Polo-like kinase 1 (PLK1). Phosphorylated Polθ is recruited by a direct interaction with the BRCA1 C-terminal domains of TOPBP1 to mitotic DSBs, where it mediates joining of broken DNA ends. Loss of Polθ leads to defective repair of mitotic DSBs, resulting in a loss of genome integrity. This is further exacerbated in cells that are deficient in homologous recombination, where loss of mitotic DSB repair by Polθ results in cell death. Our results identify mitotic DSB repair as the underlying cause of synthetic lethality between Polθ and homologous recombination. Together, our findings reveal the critical importance of mitotic DSB repair in the maintenance of genome integrity.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Polimerasa Dirigida por ADN , Mitosis , Proteínas Serina-Treonina Quinasas , Humanos , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Recombinación Homóloga/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Mutaciones Letales Sintéticas , ADN Polimerasa theta , Quinasa Tipo Polo 1
3.
Proc Natl Acad Sci U S A ; 119(18): e2115960119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35482924

RESUMEN

Nephronophthisis (NPH) is an autosomal recessive tubulointerstitial nephropathy belonging to the ciliopathy disorders and known as the most common cause of hereditary end-stage renal disease in children. Yet, no curative treatment is available. The major gene, NPHP1, encodes a protein playing key functions at the primary cilium and cellular junctions. Using a medium-throughput drug-screen in NPHP1 knockdown cells, we identified 51 Food and Drug Administration-approved compounds by their ability to alleviate the cellular phenotypes associated with the loss of NPHP1; 11 compounds were further selected for their physicochemical properties. Among those compounds, prostaglandin E1 (PGE1) rescued ciliogenesis defects in immortalized patient NPHP1 urine-derived renal tubular cells, and improved ciliary and kidney phenotypes in our NPH zebrafish and Nphp1 knockout mouse models. Furthermore, Taprenepag, a nonprostanoid prostaglandin E2 receptor agonist, alleviated the severe retinopathy observed in Nphp1−/− mice. Finally, comparative transcriptomics allowed identification of key signaling pathways downstream PGE1, including cell cycle progression, extracellular matrix, adhesion, or actin cytoskeleton organization. In conclusion, using in vitro and in vivo models, we showed that prostaglandin E2 receptor agonists can ameliorate several of the pleotropic phenotypes caused by the absence of NPHP1; this opens their potential as a first therapeutic option for juvenile NPH-associated ciliopathies.


Asunto(s)
Ciliopatías , Enfermedades Renales Poliquísticas , Animales , Cilios/metabolismo , Ciliopatías/tratamiento farmacológico , Ciliopatías/genética , Ciliopatías/metabolismo , Femenino , Humanos , Enfermedades Renales Quísticas/congénito , Masculino , Ratones , Enfermedades Renales Poliquísticas/metabolismo , Prostaglandinas/metabolismo , Receptores de Prostaglandina E/metabolismo , Pez Cebra
4.
J Cell Sci ; 132(8)2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30872458

RESUMEN

In this study, we aimed to identify the myosin motor proteins that control trafficking at the Golgi complex. In addition to the known Golgi-associated myosins MYO6, MYO18A and MYH9 (myosin IIA), we identified MYO1C as a novel player at the Golgi in a human cell line. We demonstrate that depletion of MYO1C induces Golgi complex fragmentation and decompaction. MYO1C accumulates at dynamic structures around the Golgi complex that colocalize with Golgi-associated actin dots. MYO1C depletion leads to loss of cellular F-actin, and Golgi complex decompaction is also observed after inhibition or loss of the actin-related protein 2/3 complex, Arp2/3 (also known as ARPC). We show that the functional consequence of MYO1C depletion is a delay in the arrival of incoming transport carriers, both from the anterograde and retrograde routes. We propose that MYO1C stabilizes actin at the Golgi complex, facilitating the arrival of incoming transport carriers at the Golgi.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Aparato de Golgi/metabolismo , Miosina Tipo I/metabolismo , Línea Celular , Movimiento Celular , Humanos , Miosina Tipo I/genética , Transporte de Proteínas
5.
Bioinformatics ; 36(5): 1607-1613, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31608933

RESUMEN

MOTIVATION: High-content screening is an important tool in drug discovery and characterization. Often, high-content drug screens are performed on one single-cell line. Yet, a single-cell line cannot be thought of as a perfect disease model. Many diseases feature an important molecular heterogeneity. Consequently, a drug may be effective against one molecular subtype of a disease, but less so against another. To characterize drugs with respect to their effect not only on one cell line but on a panel of cell lines is therefore a promising strategy to streamline the drug discovery process. RESULTS: The contribution of this article is 2-fold. First, we investigate whether we can predict drug mechanism of action (MOA) at the molecular level without optimization of the MOA classes to the screen specificities. To this end, we benchmark a set of algorithms within a conventional pipeline, and evaluate their MOA prediction performance according to a statistically rigorous framework. Second, we extend this conventional pipeline to the simultaneous analysis of multiple cell lines, each manifesting potentially different morphological baselines. For this, we propose multi-task autoencoders, including a domain-adaptive model used to construct domain-invariant feature representations across cell lines. We apply these methods to a pilot screen of two triple negative breast cancer cell lines as models for two different molecular subtypes of the disease. AVAILABILITY AND IMPLEMENTATION: https://github.com/jcboyd/multi-cell-line or https://zenodo.org/record/2677923. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Descubrimiento de Drogas , Línea Celular
6.
PLoS Genet ; 12(6): e1006096, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27272900

RESUMEN

Understanding the medical effect of an ever-growing number of human variants detected is a long term challenge in genetic counseling. Functional assays, based on in vitro or in vivo evaluations of the variant effects, provide essential information, but they require robust statistical validation, as well as adapted outputs, to be implemented in the clinical decision-making process. Here, we assessed 25 pathogenic and 15 neutral missense variants of the BRCA1 breast/ovarian cancer susceptibility gene in four BRCA1 functional assays. Next, we developed a novel approach that refines the variant ranking in these functional assays. Lastly, we developed a computational system that provides a probabilistic classification of variants, adapted to clinical interpretation. Using this system, the best functional assay exhibits a variant classification accuracy estimated at 93%. Additional theoretical simulations highlight the benefit of this ready-to-use system in the classification of variants after functional assessment, which should facilitate the consideration of functional evidences in the decision-making process after genetic testing. Finally, we demonstrate the versatility of the system with the classification of siRNAs tested for human cell growth inhibition in high throughput screening.


Asunto(s)
Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Neoplasias Ováricas/genética , Proteína BRCA1/genética , Toma de Decisiones Clínicas , Femenino , Asesoramiento Genético/métodos , Pruebas Genéticas/métodos , Humanos , Mutación Missense/genética
7.
BMC Cancer ; 15: 1020, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26715116

RESUMEN

BACKGROUND: Aberrant activation of the Wnt/ß-catenin pathway is a major and frequent event in liver cancer, but inhibition of oncogenic ß-catenin signaling has proven challenging. The identification of genes that are synthetically lethal in ß-catenin-activated cancer cells would provide new targets for therapeutic drug design. METHODS: We transfected the parental HuH6 hepatoblastoma cell line with a doxycycline-inducible shRNA against CTNNB1 (gene coding for ß-catenin) to obtain an isogenic cell line pair with or without aberrant ß-catenin signaling. Using this hepatoblastoma isogenic cell line pair, we performed a human kinome-wide siRNA screen to identify synthetic lethal interactions with oncogenic CTNNB1. The phenotypic readouts of the screen were cell proliferation, cell cycle arrest and apoptosis, which were assessed by image-based analysis. In addition, apoptosis was assessed by flow cytometric experiments and immunoblotting. The potential synthetic lethal relationship between candidates genes identified in the screen and oncogenic CTNNB1 was also investigated in a different cellular context, a colorectal HCT116 isogenic cell line pair. RESULTS: We first determined the experimental conditions that led to the efficient expression of shRNA against CTNNB1 and maximal reduction of ß-catenin signaling activity in response to doxycycline treatment. Following high throughput screening in which 687 genes coding for kinases and proteins related to kinases (such as pseudokinases and phosphatases) were targeted, we identified 52 genes required for HuH6 survival. The silencing of five of these genes selectively impaired the viability of HuH6 cells with high ß-catenin signaling: HGS, STRADA, FES, BRAF and PKMYT1. Among these candidates, HGS depletion had the strongest inhibitory effect on cell growth and led to apoptosis specifically in HuH6 with high ß-catenin activity, while HuH6 with low ß-catenin activity were spared. In addition, HGS was identified as a potential synthetic lethal partner of oncogenic CTNNB1 in the HCT116 colorectal isogenic cell line pair. CONCLUSIONS: These results demonstrate the existence of crosstalk between ß-catenin signaling and HGS. Importantly, HGS depletion specifically affected cells with uncontrolled ß-catenin signaling activity in two different types of cancer (Hepatoblastoma HuH6 and colorectal HCT116), and thus may represent a new potential target for novel therapeutic strategies in liver and colorectal cancer.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Mutación , Fosfoproteínas/genética , ARN Interferente Pequeño/metabolismo , beta Catenina/antagonistas & inhibidores , Apoptosis , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Células HCT116 , Humanos , Fosfotransferasas/antagonistas & inhibidores , Vía de Señalización Wnt , beta Catenina/genética
8.
Proc Natl Acad Sci U S A ; 109(23): 9053-8, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22611194

RESUMEN

Toll-like receptor (TLR) 3 is an endosomal TLR that mediates immune responses against viral infections upon activation by its ligand double-stranded RNA, a replication intermediate of most viruses. TLR3 is expressed widely in the body and activates both the innate and adaptive immune systems. However, little is known about how TLR3 intracellular trafficking and maturation are regulated. Here we show that newly synthesized endogenous TLR3 is transported through the ER and Golgi apparatus to endosomes, where it is rapidly cleaved. TLR3 protein expression is up-regulated by its own ligand, leading to the accumulation of its cleaved form. In agreement with its proposed role as a transporter, UNC93B1 expression is required for TLR3 cleavage and signaling. Furthermore, TLR3 signaling and cleavage are sensitive to cathepsin inhibition. Cleavage occurs between aa 252 and 346, and results in a functional receptor that signals upon activation. A truncated form of TLR3 lacking the N-terminal 345 aa also signals from acidic compartments in response to ligand activation. Screening of the human cathepsin family by RNA interference identified cathepsins B and H as key mediators of TLR3 processing. Taken together, our data indicate that TLR3 proteolytic processing is essential for its function, and suggest a mechanism of tight control of TLR3 signaling and thus immunity.


Asunto(s)
Catepsina B/metabolismo , Catepsina H/metabolismo , Transducción de Señal/inmunología , Receptor Toll-Like 3/metabolismo , Análisis de Varianza , Catepsina B/inmunología , Catepsina H/inmunología , Línea Celular , Endosomas/metabolismo , Epítopos/genética , Humanos , Immunoblotting , Inmunoprecipitación , Luciferasas , Proteínas de Transporte de Membrana/metabolismo , Interferencia de ARN , ARN Bicatenario/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem , Receptor Toll-Like 3/inmunología
9.
Carcinogenesis ; 35(3): 670-82, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24148822

RESUMEN

RNA interference has boosted the field of functional genomics, by making it possible to carry out 'loss-of-function' screens in cultured cells. Here, we performed a small interfering RNA screening, in three breast cancer cell lines, for 101 candidate driver genes overexpressed in amplified breast tumors and belonging to eight amplicons on chromosomes 8q and 17q, investigating their role in cell survival/proliferation. This screening identified eight driver genes that were amplified, overexpressed and critical for breast tumor cell proliferation or survival. They included the well-described oncogenic driver genes for the 17q12 amplicon, ERBB2 and GRB7. Four of six other candidate driver genes-RAD21 and EIF3H, both on chromosome 8q23, CHRAC1 on chromosome 8q24.3 and TANC2 on chromosome 17q23-were confirmed to be driver genes regulating the proliferation/survival of clonogenic breast cancer cells presenting an amplification of the corresponding region. Indeed, knockdown of the expression of these genes decreased cell viability, through both cell cycle arrest and apoptosis induction, and inhibited the formation of colonies in anchorage-independent conditions, in soft agar. Strategies for inhibiting the expression of these genes or the function of the proteins they encode are therefore of potential value for the treatment of breast cancers presenting amplifications of the corresponding genomic region.


Asunto(s)
Neoplasias de la Mama/genética , División Celular/genética , Supervivencia Celular/genética , Transformación Celular Neoplásica/genética , Cromosomas Humanos Par 17 , Cromosomas Humanos Par 8 , ARN Interferente Pequeño/genética , Secuencia de Bases , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular , Cartilla de ADN , Proteínas de Unión al ADN/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Proteínas Nucleares/genética , Nucleoproteínas/genética , Fosfoproteínas/genética , Proteínas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Int J Radiat Oncol Biol Phys ; 118(5): 1294-1307, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778425

RESUMEN

PURPOSE: High-throughput screening (HTS) platforms have been widely used to identify candidate anticancer drugs and drug-drug combinations; however, HTS-based identification of new drug-ionizing radiation (IR) combinations has rarely been reported. Herein, we developed an integrated approach including cell-based HTS and computational large-scale isobolographic analysis to accelerate the identification of radiosensitizing compounds acting strongly and more specifically on cancer cells. METHODS AND MATERIALS: In a 384-well plate format, 160 compounds likely to interfere with the cell response to radiation were screened on human glioblastoma (U251-MG) and cervix carcinoma (ME-180) cell lines, as well as on normal fibroblasts (CCD-19Lu). After drug exposure, cells were irradiated or not and short-term cell survival was assessed by high-throughput cell microscopy. Computational large-scale dose-response and isobolographic approach were used to identify promising synergistic drugs radiosensitizing cancer cells rather than normal cells. Synergy of a promising compound was confirmed on ME-180 cells by an independent 96-well assay protocol, and finally, by the gold-standard colony forming assay. RESULTS: We retained 4 compounds synergistic at 2 isoeffects in U251-MG and ME-180 cell lines and 11 compounds synergistically effective in only one cancer cell line. Among these 15 promising radiosensitizers, 5 compounds showed limited toxicity combined or not with IR on normal fibroblasts. CONCLUSIONS: Overall, this study demonstrated that HTS chemoradiation screening together with large-scale computational analysis is an efficient tool to identify synergistic drug-IR combinations, with concomitant assessment of unwanted toxicity on normal fibroblasts. It sparks expectations to accelerate the discovery of highly desired agents improving the therapeutic index of radiation therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Fármacos Sensibilizantes a Radiaciones , Femenino , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Detección Precoz del Cáncer , Fármacos Sensibilizantes a Radiaciones/farmacología , Antineoplásicos/farmacología , Línea Celular , Línea Celular Tumoral
11.
Nat Commun ; 15(1): 2966, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580683

RESUMEN

Between 30% and 70% of patients with breast cancer have pre-existing chronic conditions, and more than half are on long-term non-cancer medication at the time of diagnosis. Preliminary epidemiological evidence suggests that some non-cancer medications may affect breast cancer risk, recurrence, and survival. In this nationwide cohort study, we assessed the association between medication use at breast cancer diagnosis and survival. We included 235,368 French women with newly diagnosed non-metastatic breast cancer. In analyzes of 288 medications, we identified eight medications positively associated with either overall survival or disease-free survival: rabeprazole, alverine, atenolol, simvastatin, rosuvastatin, estriol (vaginal or transmucosal), nomegestrol, and hypromellose; and eight medications negatively associated with overall survival or disease-free survival: ferrous fumarate, prednisolone, carbimazole, pristinamycin, oxazepam, alprazolam, hydroxyzine, and mianserin. Full results are available online from an interactive platform ( https://adrenaline.curie.fr ). This resource provides hypotheses for drugs that may naturally influence breast cancer evolution.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/patología , Estudios de Cohortes , Comorbilidad , Simvastatina
12.
Sci Rep ; 13(1): 22599, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38114550

RESUMEN

High content screening (HCS) is a technology that automates cell biology experiments at large scale. A High Content Screen produces a high amount of microscopy images of cells under many conditions and requires that a dedicated image and data analysis workflow be designed for each assay to select hits. This heavy data analytic step remains challenging and has been recognized as one of the burdens hindering the adoption of HCS. In this work we propose a solution to hit selection by using transfer learning without additional training. A pretrained residual network is employed to encode each image of a screen into a discriminant representation. The deep features obtained are then corrected to account for well plate bias and misalignment. We then propose two training-free pipelines dedicated to the two main categories of HCS for compound selection: with or without positive control. When a positive control is available, it is used alongside the negative control to compute a linear discriminant axis, thus building a classifier without training. Once all samples are projected onto this axis, the conditions that best reproduce the positive control can be selected. When no positive control is available, the Mahalanobis distance is computed from each sample to the negative control distribution. The latter provides a metric to identify the conditions that alter the negative control's cell phenotype. This metric is subsequently used to categorize hits through a clustering step. Given the lack of available ground truth in HCS, we provide a qualitative comparison of the results obtained using this approach with results obtained with handcrafted image analysis features for compounds and siRNA screens with or without control. Our results suggests that the fully automated and generic pipeline we propose offers a good alternative to handcrafted dedicated image analysis approaches. Furthermore, we demonstrate that this solution select conditions of interest that had not been identified using the primary dedicated analysis. Altogether, this approach provides a fully automated, reproducible, versatile and comprehensive alternative analysis solution for HCS encompassing compound-based or downregulation screens, with or without positive controls, without the need for training or cell detection, or the development of a dedicated image analysis workflow.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía , Procesamiento de Imagen Asistido por Computador/métodos , ARN Interferente Pequeño , Aprendizaje Automático
13.
iScience ; 26(5): 106651, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37168549

RESUMEN

Culturing and screening cells in microfluidics, particularly in three-dimensional formats, has the potential to impact diverse areas from fundamental biology to cancer precision medicine. Here, we use a platform based on anchored droplets for drug screening. The response of spheroids of Ewing sarcoma (EwS) A673 cells to simultaneous or sequential combinations of etoposide and cisplatin was evaluated. This was done by culturing spheroids of EwS cells inside 500 nL droplets then merging them with secondary droplets containing fluorescent-barcoded drugs at different concentrations. Differences in EwS spheroid growth and viability were measured by microscopy. After drug exposure such measurements enabled estimation of their IC50 values, which were in agreement with values obtained in standard multiwell plates. Then, synergistic drug combination was evaluated. Sequential combination treatment of EwS with etoposide applied 24 h before cisplatin resulted in amplified synergistic effect. As such, droplet-based microfluidics offers the modularity required for evaluation of drug combinations.

14.
Biol Imaging ; 3: e4, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38487691

RESUMEN

Drug discovery uses high throughput screening to identify compounds that interact with a molecular target or that alter a phenotype favorably. The cautious selection of molecules used for such a screening is instrumental and is tightly related to the hit rate. In this work, we wondered if cell painting, a general-purpose image-based assay, could be used as an efficient proxy for compound selection, thus increasing the success rate of a specific assay. To this end, we considered cell painting images with 30,000 molecules treatments, and selected compounds that produced a visual effect close to the positive control of an assay, by using the Frechet Inception Distance. We then compared the hit rates of such a preselection with what was actually obtained in real screening campaigns. As a result, cell painting would have permitted a significant increase in the success rate and, even for one of the assays, would have allowed to reach 80% of the hits with 10 times fewer compounds to test. We conclude that images of a cell painting assay can be directly used for compound selection prior to screening, and we provide a simple quantitative approach in order to do so.

15.
Nat Commun ; 14(1): 6386, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821450

RESUMEN

Biological sciences, drug discovery and medicine rely heavily on cell phenotype perturbation and microscope observation. However, most cellular phenotypic changes are subtle and thus hidden from us by natural cell variability: two cells in the same condition already look different. In this study, we show that conditional generative models can be used to transform an image of cells from any one condition to another, thus canceling cell variability. We visually and quantitatively validate that the principle of synthetic cell perturbation works on discernible cases. We then illustrate its effectiveness in displaying otherwise invisible cell phenotypes triggered by blood cells under parasite infection, or by the presence of a disease-causing pathological mutation in differentiated neurons derived from iPSCs, or by low concentration drug treatments. The proposed approach, easy to use and robust, opens the door to more accessible discovery of biological and disease biomarkers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Descubrimiento de Drogas/métodos , Fenotipo
16.
Clin Cancer Res ; 29(7): 1317-1331, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36602782

RESUMEN

PURPOSE: ALK-activating mutations are identified in approximately 10% of newly diagnosed neuroblastomas and ALK amplifications in a further 1%-2% of cases. Lorlatinib, a third-generation anaplastic lymphoma kinase (ALK) inhibitor, will soon be given alongside induction chemotherapy for children with ALK-aberrant neuroblastoma. However, resistance to single-agent treatment has been reported and therapies that improve the response duration are urgently required. We studied the preclinical combination of lorlatinib with chemotherapy, or with the MDM2 inhibitor, idasanutlin, as recent data have suggested that ALK inhibitor resistance can be overcome through activation of the p53-MDM2 pathway. EXPERIMENTAL DESIGN: We compared different ALK inhibitors in preclinical models prior to evaluating lorlatinib in combination with chemotherapy or idasanutlin. We developed a triple chemotherapy (CAV: cyclophosphamide, doxorubicin, and vincristine) in vivo dosing schedule and applied this to both neuroblastoma genetically engineered mouse models (GEMM) and patient-derived xenografts (PDX). RESULTS: Lorlatinib in combination with chemotherapy was synergistic in immunocompetent neuroblastoma GEMM. Significant growth inhibition in response to lorlatinib was only observed in the ALK-amplified PDX model with high ALK expression. In this PDX, lorlatinib combined with idasanutlin resulted in complete tumor regression and significantly delayed tumor regrowth. CONCLUSIONS: In our preclinical neuroblastoma models, high ALK expression was associated with lorlatinib response alone or in combination with either chemotherapy or idasanutlin. The synergy between MDM2 and ALK inhibition warrants further evaluation of this combination as a potential clinical approach for children with neuroblastoma.


Asunto(s)
Neoplasias Pulmonares , Neuroblastoma , Ratones , Animales , Humanos , Quinasa de Linfoma Anaplásico/genética , Aminopiridinas/uso terapéutico , Lactamas Macrocíclicas/farmacología , Lactamas Macrocíclicas/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico
17.
EMBO J ; 27(18): 2375-87, 2008 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-18756269

RESUMEN

The Ras family G-proteins RalA and RalB make critical non-overlapping contributions to the generation of a tumorigenic regulatory network, supporting bypass of the normal restraints on both cell proliferation and survival. The Sec6/8 complex, or exocyst, has emerged as a principal direct effector complex for Ral GTPases. Here, we show that RalA and RalB support mitotic progression through mobilization of the exocyst for two spatially and kinetically distinct steps of cytokinesis. RalA is required to tether the exocyst to the cytokinetic furrow in early cytokinesis. RalB is then required for recruitment of the exocyst to the midbody of this bridge to drive abscission and completion of cytokinesis. The collaborative action of RalA and RalB is specified by discrete subcellular compartmentalization and unique pairs of RalGEF proteins that provide inputs from both Ras-family protein-dependent and protein-independent regulatory cues. This suggests that Ral GTPases integrate diverse upstream signals to choreograph multiple roles for the exocyst in mitotic progression.


Asunto(s)
Citocinesis , Regulación de la Expresión Génica , Proteínas de Unión al GTP ral/fisiología , Factor de Intercambio de Guanina Nucleótido ral/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Supervivencia Celular , Células HeLa , Humanos , Cinética , Mitosis , Modelos Biológicos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Proteínas ras/metabolismo
18.
Cancers (Basel) ; 14(9)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35565457

RESUMEN

Ewing sarcoma (EwS) is an aggressive primary bone cancer in children and young adults characterized by oncogenic fusions between genes encoding FET-RNA-binding proteins and ETS transcription factors, the most frequent fusion being EWSR1-FLI1. We show that EGR2, an Ewing-susceptibility gene and an essential direct target of EWSR1-FLI1, directly regulates the transcription of genes encoding key enzymes of the mevalonate (MVA) pathway. Consequently, Ewing sarcoma is one of the tumors that expresses the highest levels of mevalonate pathway genes. Moreover, genome-wide screens indicate that MVA pathway genes constitute major dependencies of Ewing cells. Accordingly, the statin inhibitors of HMG-CoA-reductase, a rate-limiting enzyme of the MVA pathway, demonstrate cytotoxicity in EwS. Statins induce increased ROS and lipid peroxidation levels, as well as decreased membrane localization of prenylated proteins, such as small GTP proteins. These metabolic effects lead to an alteration in the dynamics of S-phase progression and to apoptosis. Statin-induced effects can be rescued by downstream products of the MVA pathway. Finally, we further show that statins impair tumor growth in different Ewing PDX models. Altogether, the data show that statins, which are off-patent, well-tolerated, and inexpensive compounds, should be strongly considered in the therapeutic arsenal against this deadly childhood disease.

19.
J Mol Biol ; 434(6): 167277, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-34599939

RESUMEN

Establishment of the interferon (IFN)-mediated antiviral state provides a crucial initial line of defense against viral infection. Numerous genes that contribute to this antiviral state remain to be identified. Using a loss-of-function strategy, we screened an original library of 1156 siRNAs targeting 386 individual curated human genes in stimulated microglial cells infected with Zika virus (ZIKV), an emerging RNA virus that belongs to the flavivirus genus. The screen recovered twenty-one potential host proteins that modulate ZIKV replication in an IFN-dependent manner, including the previously known IFITM3 and LY6E. Further characterization contributed to delineate the spectrum of action of these genes towards other pathogenic RNA viruses, including Hepatitis C virus and SARS-CoV-2. Our data revealed that APOL3 acts as a proviral factor for ZIKV and several other related and unrelated RNA viruses. In addition, we showed that MTA2, a chromatin remodeling factor, possesses potent flavivirus-specific antiviral functions induced by IFN. Our work identified previously unrecognized genes that modulate the replication of RNA viruses in an IFN-dependent manner, opening new perspectives to target weakness points in the life cycle of these viruses.


Asunto(s)
Flavivirus , Interferones , Replicación Viral , Apolipoproteínas L/genética , Apolipoproteínas L/metabolismo , Flavivirus/fisiología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Interferones/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , SARS-CoV-2/fisiología , Virus Zika/fisiología
20.
NPJ Precis Oncol ; 6(1): 81, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323843

RESUMEN

Inactivating mutations of MBD4 have been reported in subsets of various tumors. A deficiency of this DNA glycosylase, recognizing specifically T:G mismatch resulting from the deamination of methyl-cytosine, results in a hypermutated phenotype due to the accumulation of CpG>TpG transitions. Here, we hypothesize that the difference in DNA metabolism consecutive to MBD4 deficiency may result in specific cytotoxicities in MBD4-deficient tumor cells in a synthetic lethality fashion. After a large-scale drug repurposing screen, we show in two isogenic MBD4 knock-out cell models that the inactivation of MBD4 sensitizes cancer cells to cytidine analogs. We further confirm the exquisite activity of gemcitabine in an MBD4-deficient co-clinical model as (i) it completely prevented the development of an MBD4-deficient uveal melanoma patient-derived xenograft and (ii) treatment in the corresponding patient resulted in an exceptional tumor response. These data suggest that patients harboring MBD4-deficient tumors may be treated efficiently by cytidine analogs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA