Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(12): 3267-3280.e18, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34043941

RESUMEN

Searching for factors to improve knockin efficiency for therapeutic applications, biotechnology, and generation of non-human primate models of disease, we found that the strand exchange protein RAD51 can significantly increase Cas9-mediated homozygous knockin in mouse embryos through an interhomolog repair (IHR) mechanism. IHR is a hallmark of meiosis but only occurs at low frequencies in somatic cells, and its occurrence in zygotes is controversial. Using multiple approaches, we provide evidence for an endogenous IHR mechanism in the early embryo that can be enhanced by RAD51. This process can be harnessed to generate homozygotes from wild-type zygotes using exogenous donors and to convert heterozygous alleles into homozygous alleles without exogenous templates. Furthermore, we identify additional IHR-promoting factors and describe features of IHR events. Together, our findings show conclusive evidence for IHR in mouse embryos and describe an efficient method for enhanced gene conversion.


Asunto(s)
Reparación del ADN/genética , Conversión Génica , Recombinasa Rad51/metabolismo , Alelos , Animales , Secuencia de Bases , Proteína 9 Asociada a CRISPR/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromosomas de los Mamíferos/genética , Roturas del ADN de Doble Cadena , Embrión de Mamíferos , Femenino , Sitios Genéticos , Recombinación Homóloga/genética , Homocigoto , Humanos , Mutación INDEL/genética , Ratones Endogámicos C57BL , Mosaicismo , Proteínas Nucleares/metabolismo , Polimorfismo de Nucleótido Simple/genética , Ribonucleoproteínas/metabolismo , Cigoto/metabolismo
3.
Semin Cell Dev Biol ; 57: 51-56, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27174439

RESUMEN

Barbara McClintock discovered the existence of transposable elements (TEs) in the late 1940s and initially proposed that they contributed to the gene regulatory program of higher organisms. This controversial idea gained acceptance only much later in the 1990s, when the first examples of TE-derived promoter sequences were uncovered. It is now known that half of the human genome is recognizably derived from TEs. It is thus important to understand the scope and nature of their contribution to gene regulation. Here, we provide a timeline of major discoveries in this area and discuss how transposons have revolutionized our understanding of mammalian genomes, with a special emphasis on the massive contribution of TEs to primate evolution. Our analysis of primate-specific functional elements supports a simple model for the rate at which new functional elements arise in unique and TE-derived DNA. Finally, we discuss some of the challenges and unresolved questions in the field, which need to be addressed in order to fully characterize the impact of TEs on gene regulation, evolution and disease processes.


Asunto(s)
Elementos Transponibles de ADN/genética , Mamíferos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Genoma , Humanos , Modelos Genéticos , Filogenia
4.
Genome Res ; 24(9): 1469-84, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25043600

RESUMEN

Little is known about novel genetic elements that drove the emergence of anthropoid primates. We exploited the sequencing of the marmoset genome to identify 23,849 anthropoid-specific constrained (ASC) regions and confirmed their robust functional signatures. Of the ASC base pairs, 99.7% were noncoding, suggesting that novel anthropoid functional elements were overwhelmingly cis-regulatory. ASCs were highly enriched in loci associated with fetal brain development, motor coordination, neurotransmission, and vision, thus providing a large set of candidate elements for exploring the molecular basis of hallmark primate traits. We validated ASC192 as a primate-specific enhancer in proliferative zones of the developing brain. Unexpectedly, transposable elements (TEs) contributed to >56% of ASCs, and almost all TE families showed functional potential similar to that of nonrepetitive DNA. Three L1PA repeat-derived ASCs displayed coherent eye-enhancer function, thus demonstrating that the "gene-battery" model of TE functionalization applies to enhancers in vivo. Our study provides fundamental insights into genome evolution and the origins of anthropoid phenotypes and supports an elegantly simple new null model of TE exaptation.


Asunto(s)
Elementos Transponibles de ADN/genética , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Haplorrinos/genética , Modelos Genéticos , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Sitios Genéticos , Humanos , Especificidad de Órganos , Secuencias Repetitivas de Ácidos Nucleicos
5.
bioRxiv ; 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37904944

RESUMEN

Chimerism happens rarely among most mammals but is common in marmosets and tamarins, a result of fraternal twin or triplet birth patterns in which in utero connected circulatory systems (through which stem cells transit) lead to persistent blood chimerism (12-80%) throughout life. The presence of Y-chromosome DNA sequences in other organs of female marmosets has long suggested that chimerism might also affect these organs. However, a longstanding question is whether this chimerism is driven by blood-derived cells or involves contributions from other cell types. To address this question, we analyzed single-cell RNA-seq data from blood, liver, kidney and multiple brain regions across a number of marmosets, using transcribed single nucleotide polymorphisms (SNPs) to identify cells with the sibling's genome in various cell types within these tissues. Sibling-derived chimerism in all tissues arose entirely from cells of hematopoietic origin (i.e., myeloid and lymphoid lineages). In brain tissue this was reflected as sibling-derived chimerism among microglia (20-52%) and macrophages (18-64%) but not among other resident cell types (i.e., neurons, glia or ependymal cells). The percentage of microglia that were sibling-derived showed significant variation across brain regions, even within individual animals, likely reflecting distinct responses by siblings' microglia to local recruitment or proliferation cues or, potentially, distinct clonal expansion histories in different brain areas. In the animals and tissues we analyzed, microglial gene expression profiles bore a much stronger relationship to local/host context than to sibling genetic differences. Naturally occurring marmoset chimerism will provide new ways to understand the effects of genes, mutations and brain contexts on microglial biology and to distinguish between effects of microglia and other cell types on brain phenotypes.

6.
Sci Adv ; 9(41): eadk3986, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824615

RESUMEN

The mammalian brain is composed of many brain structures, each with its own ontogenetic and developmental history. We used single-nucleus RNA sequencing to sample over 2.4 million brain cells across 18 locations in the common marmoset, a New World monkey primed for genetic engineering, and examined gene expression patterns of cell types within and across brain structures. The adult transcriptomic identity of most neuronal types is shaped more by developmental origin than by neurotransmitter signaling repertoire. Quantitative mapping of GABAergic types with single-molecule FISH (smFISH) reveals that interneurons in the striatum and neocortex follow distinct spatial principles, and that lateral prefrontal and other higher-order cortical association areas are distinguished by high proportions of VIP+ neurons. We use cell type-specific enhancers to drive AAV-GFP and reconstruct the morphologies of molecularly resolved interneuron types in neocortex and striatum. Our analyses highlight how lineage, local context, and functional class contribute to the transcriptional identity and biodistribution of primate brain cell types.


Asunto(s)
Callithrix , Neocórtex , Animales , Neocórtex/fisiología , Neuronas/fisiología , Distribución Tisular
7.
Nat Microbiol ; 7(2): 312-326, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35102304

RESUMEN

Host cell chromatin changes are thought to play an important role in the pathogenesis of infectious diseases. Here we describe a histone acetylome-wide association study (HAWAS) of an infectious disease, on the basis of genome-wide H3K27 acetylation profiling of peripheral blood granulocytes and monocytes from persons with active Mycobacterium tuberculosis (Mtb) infection and healthy controls. We detected >2,000 differentially acetylated loci in either cell type in a Singapore Chinese discovery cohort (n = 46), which were validated in a subsequent multi-ethnic Singapore cohort (n = 29), as well as a longitudinal cohort from South Africa (n = 26), thus demonstrating that HAWAS can be independently corroborated. Acetylation changes were correlated with differential gene expression. Differential acetylation was enriched near potassium channel genes, including KCNJ15, which modulates apoptosis and promotes Mtb clearance in vitro. We performed histone acetylation quantitative trait locus (haQTL) analysis on the dataset and identified 69 candidate causal variants for immune phenotypes among granulocyte haQTLs and 83 among monocyte haQTLs. Our study provides proof-of-principle for HAWAS to infer mechanisms of host response to pathogens.


Asunto(s)
Estudios de Asociación Genética , Histonas/genética , Mycobacterium tuberculosis/inmunología , Tuberculosis/genética , Tuberculosis/inmunología , Acetilación , Adulto , Cromatina , Estudios de Cohortes , Femenino , Granulocitos/inmunología , Histonas/inmunología , Humanos , Estudios Longitudinales , Masculino , Monocitos/inmunología , Monocitos/microbiología , Prueba de Estudio Conceptual , Sitios de Carácter Cuantitativo , Singapur , Sudáfrica , Células THP-1 , Tuberculosis/microbiología , Adulto Joven
8.
Nat Commun ; 11(1): 2325, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393762

RESUMEN

Common polygenic diseases result from compounded risk contributed by multiple genetic variants, meaning that simultaneous correction or introduction of single nucleotide variants is required for disease modeling and gene therapy. Here, we show precise, efficient, and simultaneous multiplex base editing of up to three target sites across 11 genes/loci in cynomolgus monkey embryos using CRISPR-based cytidine- and adenine-base editors. Unbiased whole genome sequencing demonstrates high specificity of base editing in monkey embryos. Our data demonstrate feasibility of multiplex base editing for polygenic disease modeling in primate zygotes.


Asunto(s)
Edición Génica/métodos , Animales , Secuencia de Bases , Embrión de Mamíferos/metabolismo , Exones/genética , Feto/metabolismo , Hígado/metabolismo , Macaca fascicularis/embriología , Mutación/genética
9.
ILAR J ; 61(2-3): 110-138, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34933341

RESUMEN

We provide here a current overview of marmoset (Callithrix) evolution, hybridization, species biology, basic/biomedical research, and conservation initiatives. Composed of 2 subgroups, the aurita group (C aurita and C flaviceps) and the jacchus group (C geoffroyi, C jacchus, C kuhlii, and C penicillata), this relatively young primate radiation is endemic to the Brazilian Cerrado, Caatinga, and Atlantic Forest biomes. Significant impacts on Callithrix within these biomes resulting from anthropogenic activity include (1) population declines, particularly for the aurita group; (2) widespread geographic displacement, biological invasions, and range expansions of C jacchus and C penicillata; (3) anthropogenic hybridization; and (4) epizootic Yellow Fever and Zika viral outbreaks. A number of Brazilian legal and conservation initiatives are now in place to protect the threatened aurita group and increase research about them. Due to their small size and rapid life history, marmosets are prized biomedical models. As a result, there are increasingly sophisticated genomic Callithrix resources available and burgeoning marmoset functional, immuno-, and epigenomic research. In both the laboratory and the wild, marmosets have given us insight into cognition, social group dynamics, human disease, and pregnancy. Callithrix jacchus and C penicillata are emerging neotropical primate models for arbovirus disease, including Dengue and Zika. Wild marmoset populations are helping us understand sylvatic transmission and human spillover of Zika and Yellow Fever viruses. All of these factors are positioning marmosets as preeminent models to facilitate understanding of facets of evolution, hybridization, conservation, human disease, and emerging infectious diseases.


Asunto(s)
Fiebre Amarilla , Infección por el Virus Zika , Virus Zika , Animales , Brasil , Callithrix/genética , Genómica , Hibridación Genética
10.
Methods Mol Biol ; 1912: 427-445, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30635904

RESUMEN

Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides that are not translated into proteins. They have recently gained widespread attention due to the finding that tens of thousands of lncRNAs reside in the human genome, and due to an increasing number of lncRNAs that are found to be associated with disease. Some lncRNAs, including disease-associated ones, play different roles in regulating the cell cycle. Mathematical models of the cell cycle have been useful in better understanding this biological system, such as how it could be robust to some perturbations and how the cell cycle checkpoints could act as a switch. Here, we discuss mathematical modeling techniques for studying lncRNA regulation of the mammalian cell cycle. We present examples on how modeling via network analysis and differential equations can provide novel predictions toward understanding cell cycle regulation in response to perturbations such as DNA damage.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Regulación de la Expresión Génica , Modelos Genéticos , ARN Largo no Codificante/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/genética , Humanos , ARN Largo no Codificante/genética
11.
Nat Commun ; 8: 14694, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28272467

RESUMEN

Male-pattern baldness (MPB) is a common and highly heritable trait characterized by androgen-dependent, progressive hair loss from the scalp. Here, we carry out the largest GWAS meta-analysis of MPB to date, comprising 10,846 early-onset cases and 11,672 controls from eight independent cohorts. We identify 63 MPB-associated loci (P<5 × 10-8, METAL) of which 23 have not been reported previously. The 63 loci explain ∼39% of the phenotypic variance in MPB and highlight several plausible candidate genes (FGF5, IRF4, DKK2) and pathways (melatonin signalling, adipogenesis) that are likely to be implicated in the key-pathophysiological features of MPB and may represent promising targets for the development of novel therapeutic options. The data provide molecular evidence that rather than being an isolated trait, MPB shares a substantial biological basis with numerous other human phenotypes and may deserve evaluation as an early prognostic marker, for example, for prostate cancer, sudden cardiac arrest and neurodegenerative disorders.


Asunto(s)
Alopecia/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Adipogénesis/genética , Estudios de Casos y Controles , Factor 5 de Crecimiento de Fibroblastos/genética , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Factores Reguladores del Interferón/genética , Masculino , Melatonina , Proteínas de la Membrana/genética , Fenotipo , Transducción de Señal/genética , Transactivadores/genética
13.
PLoS One ; 11(3): e0151839, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27011330

RESUMEN

The archaeon Halobacterium salinarum can produce energy using three different processes, namely photosynthesis, oxidative phosphorylation and fermentation of arginine, and is thus a model organism in bioenergetics. Compared to its bacteriorhodopsin-driven photosynthesis, less attention has been devoted to modeling its respiratory pathway. We created a system of ordinary differential equations that models its oxidative phosphorylation. The model consists of the electron transport chain, the ATP synthase, the potassium uniport and the sodium-proton antiport. By fitting the model parameters to experimental data, we show that the model can explain data on proton motive force generation, ATP production, and the charge balancing of ions between the sodium-proton antiporter and the potassium uniport. We performed sensitivity analysis of the model parameters to determine how the model will respond to perturbations in parameter values. The model and the parameters we derived provide a resource that can be used for analytical studies of the bioenergetics of H. salinarum.


Asunto(s)
Halobacterium salinarum/metabolismo , Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/metabolismo , Transporte de Electrón , Metabolismo Energético , Modelos Biológicos , Fosforilación Oxidativa , Consumo de Oxígeno , Potasio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo
14.
Sci Rep ; 6: 32823, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27610602

RESUMEN

The restriction point marks a switch in G1 from growth factor-dependent to growth factor-independent progression of the cell cycle. The proper regulation of this switch is important for normal cell processes; aberrations could result in a number of diseases such as cancer, neurodegenerative disorders, stroke and myocardial infarction. To further understand the regulation of the restriction point, we extended a mathematical model of the Rb-E2F pathway to include members of the microRNA cluster miR-17-92. Our mathematical analysis shows that microRNAs play an essential role in fine-tuning and providing robustness to the switch. We also demonstrate how microRNA regulation can steer cells in or out of cancer states.


Asunto(s)
Factores de Transcripción E2F/genética , MicroARNs/genética , Neoplasias/genética , Proteína de Retinoblastoma/genética , Ciclo Celular , Redes Reguladoras de Genes , Humanos , Modelos Teóricos , Transducción de Señal
15.
Math Biosci Eng ; 12(6): 1277-88, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26775863

RESUMEN

We propose the hypothesis that for a particular type of cancer there exists a key pair of oncogene (OCG) and tumor suppressor gene (TSG) that is normally involved in strong stabilizing negative feedback loops (nFBLs) of molecular interactions, and it is these interactions that are sufficiently perturbed during cancer development. These nFBLs are thought to regulate oncogenic positive feedback loops (pFBLs) that are often required for the normal cellular functions of oncogenes. Examples given in this paper are the pairs of MYC and p53, KRAS and INK4A, and E2F1 and miR-17-92. We propose dynamical models of the aforementioned OCG-TSG interactions and derive stability conditions of the steady states in terms of strengths of cycles in the qualitative interaction network. Although these conditions are restricted to predictions of local stability, their simple linear expressions in terms of competing nFBLs and pFBLs make them intuitive and practical guides for experimentalists aiming to discover drug targets and stabilize cancer networks.


Asunto(s)
Genes Supresores de Tumor , Modelos Genéticos , Neoplasias/genética , Oncogenes , Diferenciación Celular/genética , Proliferación Celular/genética , Retroalimentación Fisiológica , Redes Reguladoras de Genes , Humanos , Conceptos Matemáticos , Neoplasias/etiología , Neoplasias/patología
16.
Math Biosci ; 225(1): 68-80, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20188746

RESUMEN

The archaeon Halobacterium salinarum can grow phototrophically with only light as its energy source. It uses the retinal containing and light-driven proton pump bacteriorhodopsin to enhance the membrane potential which drives the ATP synthase. Therefore, a model of the membrane potential generation of bacteriorhodopsin is of central importance to the development of a mathematical model of the bioenergetics of H. salinarum. To measure the current produced by bacteriorhodopsin at different light intensities and clamped voltages, we expressed the gene in Xenopus laevis oocytes. We present current-voltage measurements and a mathematical model of the current-voltage relationship of bacteriorhodopsin and its generation of the membrane potential. The model consists of three intermediate states, the BR, L, and M states, and comparisons between model predictions and experimental data show that the L to M reaction must be inhibited by the membrane potential. The model is not able to fit the current-voltage measurements when only the M to BR phase is membrane potential dependent, while it is able to do so when either only the L to M reaction or both reactions (L to M and M to BR) are membrane potential dependent. We also show that a decay term is necessary for modeling the rate of change of the membrane potential.


Asunto(s)
Bacteriorodopsinas/fisiología , Halobacterium salinarum/fisiología , Potenciales de la Membrana/fisiología , Modelos Biológicos , Animales , Bacteriorodopsinas/genética , Femenino , Técnicas de Placa-Clamp , Transfección , Xenopus laevis
17.
Math Biosci ; 222(2): 117-26, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19857501

RESUMEN

Steady-state analysis is performed on the kinetic model for the switch complex of the flagellar motor of Halobacterium salinarum (Nutsch et al.). The existence and uniqueness of a positive steady-state of the system is established and it is demonstrated why the steady-state is centered around the competent phase, a state of the motor in which it is able to respond to light stimuli. It is also demonstrated why the steady-state shifts to the refractory phase when the steady-state value of the response regulator CheYP increases. This work is one aspect of modeling in systems biology wherein the mathematical properties of a model are established.


Asunto(s)
Proteínas Bacterianas/fisiología , Flagelos/fisiología , Halobacterium salinarum/fisiología , Proteínas de la Membrana/fisiología , Modelos Biológicos , Proteínas Motoras Moleculares/fisiología , Algoritmos , Movimiento Celular/fisiología , Simulación por Computador , Cinética , Modelos Lineales , Proteínas Quimiotácticas Aceptoras de Metilo , Dinámicas no Lineales , Transducción de Señal/fisiología , Biología de Sistemas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA